Save Time On Research and Writing
Hire a Pro to Write You a 100% Plagiarism-Free Paper.
Get My Paper
This is a tutorial assignment on Cluster & Multivariate Analysis.
Run the Python code provided and write a brief paragraph regarding the results.
#
-*- coding: utf-8 -*-
Save Time On Research and Writing
Hire a Pro to Write You a 100% Plagiarism-Free Paper.
Get My Paper
# K-means Cluster Analysis (Python)
from __future__ import division, print_function
# import packages for this example
import pandas as pd
# DataFrame operations
from collections import OrderedDict # to create DataFrame with ordered columns
# special plotting methods
from pandas.tools.plotting import scatter_matrix
import numpy as np # arrays and math functions
import matplotlib.pyplot as plt # static plotting
from sklearn import preprocessing
from sklearn.cluster import KMeans
from sklearn import metrics # for silhouette coefficient
# previously obtained data from public-domain source at Stanford University
# 240 student participants’ self-ratings on 32 personality attributes
# a review of these data suggests that student survey participants were
# given an adjective check-list with instructions to self-rate such as:
# “Rate the extent to which each adjective describes you. Use a
# 1-to-9 scale, where 1 means ‘very much unlike me’ and
# 9 means ‘very much like me.’ ”
# source: http://www.stanford.edu/class/psych253/data/personality0.txt
# create Pandas DataFrame from the student data
# define a pandas DataFrame
student_data=pd.read_csv(‘C:/Users/Jahee Koo/Desktop/MSPA/2018_Winter_410_regression/HW04_Cluster/student_data.csv’)
# for fun, add your own data to the student_data
# data frame by self-rating the 32 adjectives on a 1-to-9 scale …
# this would provide 241 observations
# for example…
# my_data_dict = {“distant”:1, “talkative”:5, “careless”:1, “hardworking”:8,
# “anxious”:2, “agreeable”:6, “tense”:1, “kind”:7, “opposing”:3, “relaxed”:5,
# “disorganized”:4, “outgoing”:5, “approving”:3, “shy”:1, “disciplined”:5,
# “harsh”:1, “persevering”:9, “friendly”:7, “worrying”:3, “responsive”:6,
# “contrary”:2, “sociable”:6, “lazy”:1, “cooperative”:8, “quiet”:3,
# “organized”:6, “critical”:5, “lax”:2, “laidback”:5, “withdrawn”:1,
# “givingup”:1, “easygoing”:6}
# my_data_frame = pd.DataFrame(my_data_dict, index = [0])
# student_data = pd.concat([student_data, my_data_frame])
print(”)
print(‘—– Summary of Input Data —–‘)
print(”)
# show the object is a DataFrame
print(‘Object type: ‘, type(student_data))
# show number of observations in the DataFrame
print(‘Number of observations: ‘, len(student_data))
# show variable names
variable = student_data.columns
print(‘Variable names: ‘, variable)
# show descriptive statistics
pd.set_option(‘display.max_columns’, None) # do not limit output
print(student_data.describe())
# show a portion of the beginning of the DataFrame
print(student_data.head())
print(”)
print(‘—– K-means Cluster Analysis of Variables —–‘)
print(”)
# it is good practice to standardize variables prior to clustering
# work with standard scores for all cluster variables
# standard scores have zero mean and unit standard deviation
# here we standardize each student’s data
standardized_student_data_matrix = preprocessing.scale(student_data)
# transpose of matrix needed for clusters of variables
variable_cluster_data = student_data.T
# specify the number of clusters in order to perform
# K-means cluster analysis on the variables in the study
# there is much psychological research about what are called
# the big five factors of perosnality:
# extraversion, agreeableness, conscientiousness, neuroticism, openness
#
# some personality researchers have focused on only two factors:
# extraversion/introversion and neuroticism
# suppose we think five factors (and five clusters) will be sufficient
# here we use our knowledge of the big-five personality factors
# assuming that there may well be five clusters to identify
kmeans = KMeans(n_clusters = 5, n_init = 25, random_state = 1)
kmeans.fit(variable_cluster_data)
cluster = kmeans.predict(variable_cluster_data) # cluster ids for variables
# create pandas DataFrame for summarizing the cluster analysis results
#variable_kmeans_solution = pd.DataFrame(OrderedDict([(‘cluster’, cluster),(‘variable’, variable )]))
variable_kmeans_solution = pd.DataFrame(OrderedDict([(‘cluster’, cluster),(‘variable’, variable ) ]))
print(variable_kmeans_solution)
# print results of variable clustering one cluster at a time
for cluster_id in sorted(variable_kmeans_solution.cluster.unique()):
print()
print(variable_kmeans_solution.loc[variable_kmeans_solution[‘cluster’] == \
cluster_id])
# The silhouette coefficient is a useful general-purpose index
# for evaluating the strength of a clustering solution. The original
# reference is
# Peter J. Rousseeuw (1987). “Silhouettes: a Graphical Aid to the
# Interpretation and Validation of Cluster Analysis”.
# Computational and Applied Mathematics 20: 53–65.
# doi:10.1016/0377-0427(87)90125-7.
# larger positive values of the silhouette coefficient are preferred
# these indicate dense, well separated clusters
# evaluate the clustering solution using the silhouette coefficient
print(‘Silhouette coefficient for the five-cluster k-means solution: ‘,
metrics.silhouette_score(variable_cluster_data, cluster,
metric = ‘euclidean’))
# a low silhouette coefficient suggests that we may want to try
# kmeans with alternative values for the number of clusters
# or perhaps this problem is not particularly well suited for cluster analysis
print(”)
print(‘—– Selected K-means Cluster Analysis for Student Segments —–‘)
print(”)
# here we are working in much the way we would in a market research
# study looking for market segments… here segments/clusters of students
# it is good practice to standardize variables prior to clustering
# work with standard scores for all cluster variables across students
# standard scores have zero mean and unit standard deviation for all variables
# these were computed earlier in working on the variable clustering
student_cluster_data = student_data
# specify the number of clusters in order to perform
# K-means cluster analysis on the variables in the study
# with no preconceived notions about the number of student segments/clusters
# we search across various cluster analysis solutions defined
# each individual k-means solution is defined by the argument n_clusters
# consider selecting a solution based on the silhouette coefficient
# for more info on silhouette see
# http://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.html
for nclusters in range(2,21): # search between 2 and 20 clusters/segments
kmeans = KMeans(n_clusters = nclusters, n_init = 25, random_state = 1)
kmeans.fit(student_cluster_data)
segment = kmeans.predict(student_cluster_data) # cluster ids for variables
print(‘nclusters: ‘, nclusters, ‘ silhouette coefficient: ‘,
metrics.silhouette_score(student_cluster_data, segment,
metric=’euclidean’))
# results suggest that a two-cluster/segment solution is best
print(”)
print(‘—– Solution for Two Student Segments —–‘)
print(”)
kmeans = KMeans(n_clusters = 2, n_init = 25, random_state = 1)
kmeans.fit(student_cluster_data)
segment = kmeans.predict(student_cluster_data) # cluster index
# create pandas DataFrame for summarizing the cluster analysis results
# using OrderedDict to preserve the order of column names
student_kmeans_solution = pd.DataFrame(OrderedDict(
[(‘student’, range(0,len(student_cluster_data))),
(‘segment’, segment)]))
print(student_kmeans_solution)
# to interpret the results of the segmentation
# we can review the original ratings data for the two clusters/segments
# merge/join the segment information with the original student data
student_segmentation_data = student_kmeans_solution.join(student_data)
# try printing the means for attributes within each segment
for segment_id in sorted(student_segmentation_data.segment.unique()):
print()
print(‘Attribute means for segment: ‘, segment_id)
this_student_segment_data = student_segmentation_data[ \
student_segmentation_data.segment == segment_id]
attributes = this_student_segment_data.ix[:,’distant’:’easygoing’].mean()
print(attributes)
centers = kmeans.cluster_centers_
plt.scatter(centers[:,0],centers[:,1], c=’black’,s=200,alpha=0.5)
#make blobs
#a different example where the data is generated
from sklearn.datasets.samples_generator import make_blobs
X,y_true = make_blobs(n_samples=300,centers=4,cluster_std=.60,random_state=0)
plt.scatter(X[:, 0],X[:, 1], s=50);
print(X)
kmeans.fit(X)
y_kmeans = kmeans.predict(X)
plt.scatter(X[:,0],X[:,1], c = y_kmeans, s=50, cmap = ‘viridis’)
centers = kmeans.cluster_centers_
plt.scatter(centers[:,0],centers[:,1], c=’black’,s=200,alpha=0.5);
| distant |
talkative |
careless |
hardworking |
anxious |
agreeable |
tense |
kind |
opposing |
re
| lax |
ed
dis
| organized |
outgoing |
approving |
shy |
disciplined |
harsh |
persevering |
friendly |
worrying |
responsive |
contrary |
sociable |
lazy |
cooperative |
quiet |
organized
critical |
lax
laidback |
withdrawn |
givingup |
easygoing |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
7
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
2 7 9 5 5 8 9 9 9 5 9 7 9 9 5 5 5 7 5 5 8
3 8 2 7 5 8 4 8 5 7 5 8 7 6 7 3 7 7 5 7 5 8 2 7 6 6 4 3 7 2 2 7
6 6 2 5 1 8 2 9 2 8 7 6 7 5 5 2 5 8 3 9 2 8 5 8 7 4 5 5 7 6 2 8
3 7 6 7 8 8 2 8 3 7 2 5 6 4 6 2 8 8 3 8 2 6 3 8 4 7 6 6 6 4 3 7
7 3 3 5 8 6 7 2 3 3 5 2 5 8 7 5 6 2 8 7 3 2 6 6 7 5 5 3 3 7 5 5
7 6 7 6 7 8 7 8 5 5 6 5 6 8 5 3 6 7 7 7 5 4 5 7 8 6 6 4 4 6 4 7
3 6 8 6 6 7 3 5 3 7 7 8 7 5 7 2 4 8 6 2 2 9 6 6 4 4 6 9 9 2 3 8
7 6 2 9 7 8 6 7 2 4 4 6 5 4 8 6 8 6 5 8 5 7 4 8 6 6 4 3 2 5 6 6
2 6 2 8 2 7 4 7 4 8 3 8 7 3 6 4 8 8 2 8 3 8 3 8 5 7 7 3 6 3 1 7
4 7 3 6 3 7 3 7 5 6 3 5 7 5 7 6 7 6 4 7 4 7 3 7 5 6 5 3 4 4 2 5
3 5 2 8 3 7 3 5 4 5 2 5 4 7 8 7 8 7 3 8 5 7 4 7 7 8 7 5 5 6 2 7
3 4 6 4 7 4 7 4 6 5 5 3 4 7 4 6 4 4 7 5 6 4 5 4 7 5 5 5 5 7 7 4
2 5 4 7 8 8 7 8 3 4 3 5 6 6 7 2 7 7 8 6 2 6 5 8 8 6 3 3 3 5 4 4
7 3 2 8 5 8 3 7 4 7 5 3 5 6 8 2 7 8 7 8 3 5 3 6 7 4 5 3 7 6 3 7
7 3 5 6 6 7 6 6 3 5 3 4 6 6 5 3 7 6 6 7 4 4 5 6 5 6 4 5 6 6 4 6
6 3 2 8 4 6 5 8 3 6 1 6 5 7 8 2 8 7 6 8 3 7 1 7 7 8 5 1 6 5 1 6
4 5 4 8 7 6 7 7 4 4 2 6 5 5 6 1 9 8 9 9 3 5 5 9 5 9 9 7 3 5 1 6
6 5 2 9 6 5 6 6 4 4 1 6 7 5 9 3 9 7 8 9 6 6 3 5 5 9 6 1 5 6 2 6
2 7 2 7 3 6 6 7 2 6 6 8 6 2 6 2 7 7 2 9 3 7 4 7 2 6 3 2 7 2 2 7
6 4 3 5 6 6 5 8 2 4 4 4 6 7 6 2 6 6 4 6 5 6 7 8 6 6 6 5 5 6 4 6
5 5 2 8 6 5 6 8 4 2 1 4 5 5 7 4 9 7 8 8 6 5 2 5 4 8 6 3 1 6 6 5
1 8 1 7 2 8 1 8 3 8 2 8 8 1 4 1 8 9 2 7 1 8 4 7 3 7 3 6 6 1 1 7
7 7 5 6 7 7 7 6 4 2 6 5 5 5 7 5 4 6 7 5 4 6 7 4 7 5 7 3 4 3 4 4
5 5 2 8 5 7 7 7 3 6 1 3 5 4 9 6 7 6 4 7 5 5 6 6 6 9 5 5 6 7 3 4
5 6 3 8 8 4 6 7 6 4 4 4 6 6 8 7 7 7 5 7 6 4 5 6 6 7 7 5 5 6 5 7
6 3 5 8 6 7 6 7 6 4 1 5 6 6 8 6 7 6 6 8 5 5 2 4 7 9 6 3 5 4 2 5
3 2 2 7 4 6 4 7 3 7 3 2 6 6 6 1 7 7 7 7 3 6 5 7 8 7 4 6 4 4 2 5
7 6 3 8 5 8 6 7 8 7 6 3 7 6 9 4 4 7 2 8 6 6 3 6 6 6 3 6 7 6 2 7
5 3 3 7 5 6 5 7 6 6 3 5 5 5 7 2 8 8 5 8 3 5 2 6 4 7 6 2 5 3 2 7
6 3 4 6 7 4 4 6 2 5 6 3 4 8 5 3 6 6 8 5 2 5 7 6 9 5 5 5 5 6 6 5
3 5 2 7 6 7 6 8 5 4 2 4 5 6 8 3 7 7 6 6 3 4 3 8 6 9 7 4 4 5 3 3
6 7 2 7 4 3 6 4 4 3 3 7 5 1 8 2 7 6 6 8 3 3 5 6 2 7 7 2 3 4 2 6
6 6 4 8 2 6 6 7 5 4 6 4 4 4 7 6 6 5 3 8 6 5 3 5 4 5 6 3 3 5 3 4
6 6 1 9 3 5 1 8 2 8 1 7 6 6 9 3 9 7 2 9 3 7 1 7 3 8 6 1 8 5 1 7
5 5 2 8 6 8 5 7 4 6 3 7 7 2 7 2 8 8 8 9 4 7 2 7 4 8 7 5 7 3 2 8
3 6 2 6 3 7 3 6 4 7 1 3 5 6 7 4 3 7 2 7 3 6 3 7 4 7 5 4 6 5 2 6
2 5 1 7 2 6 6 5 2 4 1 6 4 6 6 5 5 6 5 8 4 7 6 6 6 9 6 3 8 3 2 7
2 5 3 5 3 7 2 6 2 8 6 6 5 5 3 6 5 7 2 6 2 8 7 7 4 4 5 5 7 2 3 8
6 6 4 7 2 7 2 9 6 8 3 7 4 5 7 3 7 8 3 8 4 7 4 7 3 7 7 4 7 4 1 8
6 5 3 7 4 8 4 6 2 6 5 5 6 4 7 3 7 7 4 4 3 7 5 7 4 4 4 6 7 3 2 6
2 7 6 7 6 6 6 7 3 5 3 3 4 7 6 6 8 7 8 8 4 6 6 6 3 7 6 3 6 3 1 6
5 6 3 7 3 5 4 6 4 7 5 6 6 4 6 2 7 7 3 7 5 7 4 6 5 6 4 6 6 4 2 5
2 9 3 8 8 7 7 7 3 2 3 8 8 3 6 4 8 9 6 7 4 8 4 6 3 9 7 4 4 4 7 8
3 6 3 7 6 7 4 8 4 5 2 7 5 3 7 5 8 7 5 7 4 7 6 8 5 8 5 4 6 6 3 6
1 6 3 4 3 5 3 5 5 8 8 3 5 7 7 4 8 6 3 5 4 7 8 7 6 2 9 7 7 2 2 7
2 6 3 6 3 6 3 7 2 6 6 7 6 3 5 2 7 8 3 7 3 6 2 7 4 5 3 5 7 2 2 7
5 5 6 7 5 6 6 5 5 5 4 5 5 8 5 5 6 7 6 8 5 5 5 7 7 5 5 5 5 5 2 6
2 5 2 8 2 7 1 7 5 5 1 7 7 2 9 5 9 8 5 9 5 8 2 7 2 9 8 5 5 1 1 5
4 5 4 8 7 6 7 5 4 3 4 3 3 3 7 6 7 6 8 8 5 6 3 5 5 3 7 3 4 4 3 4
5 7 5 7 9 7 9 7 6 4 8 7 7 6 6 3 7 6 8 6 6 6 4 7 6 2 7 5 7 6 4 5
3 8 4 6 6 4 7 6 4 2 2 5 3 4 4 4 6 6 7 8 4 4 4 4 4 8 8 2 2 3 3 3
5 6 3 8 6 7 5 8 3 4 2 8 8 3 8 5 8 7 3 7 3 8 5 6 4 8 8 3 5 4 1 4
2 8 2 8 7 6 7 7 7 3 4 9 7 3 5 4 9 8 7 7 3 8 3 6 2 5 7 4 3 1 1 2
6 4 3 8 6 5 6 6 4 4 4 4 5 7 7 4 7 5 6 7 4 4 3 5 5 6 4 3 5 5 5 5
3 8 5 7 5 7 4 8 2 6 6 8 6 4 9 3 8 8 3 5 4 7 2 7 3 4 4 7 8 3 1 8
3 8 3 6 6 7 5 6 3 3 3 8 5 2 6 3 6 8 4 5 6 8 4 5 3 1 3 2 5 2 3 6
6 7 2 8 4 7 6 8 4 5 3 8 7 1 9 2 7 8 3 9 2 6 2 7 2 8 6 3 8 2 3 8
5 5 7 7 7 8 7 8 2 3 6 3 7 6 6 7 7 7 4 7 7 7 4 7 7 3 7 5 2 2 5 3
3 7 9 4 4 7 5 6 3 6 9 7 6 6 1 3 3 8 8 3 7 7 9 6 2 1 3 8 7 3 6 8
2 8 2 9 7 5 8 8 7 5 6 8 7 3 7 7 6 8 9 8 7 7 2 8 3 8 8 4 3 3 3 8
6 8 5 4 4 6 4 5 6 7 6 7 5 4 7 6 7 6 5 6 6 7 6 4 3 5 7 5 7 3 2 6
5 5 2 7 7 5 6 7 5 5 4 6 5 3 7 2 7 7 7 8 3 8 4 4 3 7 8 3 4 4 4 5
3 8 1 7 5 9 5 9 1 4 1 7 5 2 8 2 9 9 9 9 1 7 1 9 1 9 1 5 3 1 1 7
6 5 8 7 7 6 7 4 3 3 7 5 5 8 6 2 6 7 8 4 3 7 6 6 4 3 3 6 6 7 6 3
5 6 3 7 8 5 8 7 4 3 6 5 4 3 7 3 6 7 8 6 4 6 5 6 5 4 3 3 3 4 4 5
5 7 2 8 7 8 8 7 3 3 4 5 4 7 9 4 8 7 9 9 2 4 4 6 8 8 7 3 3 5 4 3
1 9 3 8 4 6 4 8 3 7 4 9 9 1 6 5 8 9 5 7 4 9 4 7 2 8 4 3 6 1 1 6
3 7 6 5 2 7 2 5 3 6 8 8 7 3 2 5 6 7 3 5 4 7 8 8 2 2 4 6 6 3 3 7
6 5 3 7 5 8 6 6 4 5 2 5 6 6 6 5 6 6 5 8 3 5 4 6 6 7 5 2 5 4 2 6
2 9 4 8 2 5 2 5 5 7 2 8 5 2 8 4 8 8 2 6 4 8 3 5 2 8 5 4 7 2 1 7
3 7 3 8 7 6 7 7 4 4 4 8 7 3 7 1 8 9 6 8 4 6 3 6 2 7 1 5 4 3 1 6
6 6 6 6 7 8 4 5 4 6 5 5 7 3 2 3 5 5 7 3 4 5 9 9 6 3 2 3 8 3 3 9
3 7 2 6 5 8 2 6 5 9 5 7 7 2 4 3 6 7 2 6 3 9 7 7 1 6 5 7 9 1 4 9
3 7 2 8 6 6 6 8 4 4 2 7 6 5 6 5 5 7 8 8 4 7 6 6 5 8 5 4 6 4 4 6
3 6 3 6 2 7 3 7 6 5 6 6 7 4 7 3 3 7 3 4 5 7 6 5 4 3 6 6 6 4 4 6
5 3 2 7 3 6 2 7 3 5 4 3 5 7 8 2 7 7 2 7 3 3 2 8 7 7 5 3 6 6 2 5
5 7 8 8 9 7 8 7 7 5 8 4 3 2 6 8 8 7 8 8 6 5 6 5 6 3 7 4 7 6 2 6
5 5 1 7 9 6 5 9 7 6 3 4 7 7 6 1 9 9 9 9 4 5 5 7 8 7 9 5 7 6 3 7
3 7 1 9 6 5 5 8 5 5 1 8 5 2 9 3 9 9 6 9 5 8 1 8 2 9 7 2 2 2 1 8
3 7 2 7 2 7 2 7 5 7 2 7 6 2 6 3 6 7 3 8 3 7 4 7 3 7 4 5 5 3 1 5
2 6 5 7 3 7 3 8 6 7 4 5 5 3 4 2 7 8 2 8 4 7 1 8 3 7 7 3 8 2 1 8
1 9 6 6 6 8 3 7 3 6 6 9 8 1 3 1 6 8 2 5 1 9 5 7 1 4 3 5 5 1 1 8
4 6 3 7 5 8 5 9 2 4 5 7 7 4 7 2 8 9 5 7 2 7 4 9 3 6 5 5 6 3 2 7
1 7 4 8 6 7 6 7 1 6 4 8 9 3 9 4 7 9 6 8 3 9 5 8 4 5 6 3 7 2 6 8
7 3 6 8 4 6 7 8 3 4 2 4 7 7 9 5 7 8 7 9 3 3 5 7 8 9 5 5 4 7 5 4
3 8 5 8 8 7 7 8 8 5 7 6 5 6 6 6 7 7 7 8 6 6 6 6 5 5 6 2 3 5 4 4
3 6 4 7 3 7 2 8 3 7 4 7 5 3 6 2 8 7 2 6 3 7 5 6 3 6 4 2 6 2 2 6
2 7 5 8 5 8 6 8 4 6 5 8 8 4 8 4 8 8 4 8 4 8 6 8 5 7 6 3 8 3 3 8
1 8 6 7 5 8 3 8 4 7 6 8 6 3 5 3 7 8 6 8 4 8 5 8 5 5 6 2 7 2 2 7
1 7 6 5 6 8 2 8 4 7 6 8 6 6 4 3 5 9 7 7 4 9 7 7 6 5 5 6 6 4 3 9
6 7 2 6 5 5 3 8 5 5 6 7 5 2 4 2 7 8 5 9 5 8 4 6 5 4 5 4 4 3 2 4
2 8 6 5 3 6 2 7 6 7 6 8 5 1 3 7 6 8 3 6 6 8 4 6 2 7 7 5 8 1 3 7
3 6 3 6 3 7 3 7 4 7 3 6 6 6 6 2 4 7 2 7 3 7 6 7 5 7 2 6 7 3 4 8
6 3 3 6 7 7 6 7 4 4 7 2 3 7 5 2 5 7 8 7 2 5 6 6 8 5 6 4 5 6 4 5
2 7 4 6 5 9 6 7 3 5 3 7 8 5 6 3 6 7 5 6 3 8 3 6 3 7 3 3 7 2 2 8
3 7 3 7 5 7 4 8 7 5 2 8 6 5 6 4 8 8 6 9 6 8 5 7 5 7 6 5 5 3 2 6
7 4 3 6 6 5 4 6 7 4 6 3 3 7 6 7 6 6 6 6 7 4 5 5 6 4 7 3 5 6 5 4
2 7 1 9 1 7 1 8 5 5 1 9 9 2 9 4 9 7 2 9 5 8 1 9 3 9 7 1 4 5 1 6
5 5 5 6 3 8 1 9 5 6 6 7 5 5 4 6 9 9 3 6 4 7 5 8 5 5 7 4 7 5 1 6
5 8 3 8 4 8 5 7 4 7 9 8 7 3 8 4 9 9 7 9 4 8 2 8 4 2 5 6 3 2 1 6
2 7 4 7 7 6 5 5 4 6 3 8 5 2 7 3 7 7 6 7 5 8 6 6 3 6 6 2 6 3 2 6
7 7 2 6 5 7 6 8 2 5 4 8 8 6 5 3 7 8 7 8 3 8 6 8 5 6 7 4 3 2 4 7
1 8 4 9 5 7 4 8 4 6 2 9 6 4 8 3 9 9 5 7 3 8 2 7 3 8 4 5 3 2 1 4
2 8 4 9 6 6 5 7 5 4 6 8 7 1 8 3 7 9 6 8 4 8 3 6 2 7 7 3 3 1 2 7
1 8 5 5 9 7 7 7 5 7 6 7 7 4 6 5 7 7 6 6 5 7 7 7 4 6 8 6 6 2 1 9
3 3 2 6 8 8 7 7 3 3 2 6 8 6 6 2 5 7 9 8 4 6 2 7 6 7 6 5 3 3 1 7
7 4 3 7 7 7 7 7 3 5 2 3 7 7 7 5 8 7 8 8 2 4 4 7 7 7 5 3 5 6 2 5
3 7 3 7 7 6 4 6 3 6 3 8 6 3 5 6 7 8 3 6 3 8 7 6 4 3 4 3 5 4 3 7
3 5 1 7 6 6 5 5 3 5 3 5 4 6 7 2 7 6 7 7 3 7 3 6 5 6 6 4 5 6 3 3
4 5 5 8 8 8 9 8 6 3 4 7 5 3 7 5 7 8 8 8 3 8 3 7 3 6 6 2 3 5 5 5
5 7 7 7 4 6 2 7 5 6 2 8 6 3 7 7 7 7 3 8 3 7 2 6 2 8 6 2 6 4 2 6
3 6 2 4 2 9 4 9 1 7 5 7 7 4 4 1 5 9 3 7 1 8 4 9 4 5 3 7 7 2 1 9
5 5 3 8 7 6 7 6 6 3 6 6 6 5 6 7 6 6 6 7 5 6 5 6 5 6 6 6 5 5 4 5
3 6 5 7 4 8 2 7 1 8 6 5 4 4 4 2 4 8 4 8 2 7 5 8 4 4 2 5 2 3 4 8
6 4 2 6 2 8 2 7 3 8 2 4 7 5 7 2 6 6 6 8 3 4 5 8 6 8 3 2 4 6 3 8
1 7 1 8 7 8 5 9 2 5 1 8 6 3 7 3 8 9 6 9 1 7 2 9 3 7 3 2 2 1 1 2
5 5 2 9 6 8 7 8 3 5 4 6 6 8 7 2 8 8 7 9 4 6 2 7 8 5 7 3 5 6 2 5
2 5 1 7 1 1 5 5 2 1 1 6 2 8 2 2 7 8 8 5 4 6 6 3 5 8 4 4 5 3 8 5
3 7 4 6 4 6 2 6 2 7 3 7 5 4 7 2 8 7 5 6 3 8 4 6 5 6 2 4 5 2 1 4
3 7 5 8 6 7 6 9 3 5 6 7 8 3 5 6 7 7 6 5 3 8 4 7 4 6 5 2 7 6 4 6
5 4 5 5 6 8 4 8 4 6 6 7 7 5 4 2 5 7 4 6 5 6 5 7 6 5 4 4 6 5 4 7
6 4 7 9 6 7 5 5 3 8 5 4 6 6 9 5 7 7 6 8 6 4 7 6 6 5 6 6 6 7 2 6
5 4 2 7 2 7 2 6 5 8 3 4 5 4 5 3 7 7 2 8 4 5 3 5 6 6 5 3 8 5 2 7
7 2 7 2 8 4 8 5 7 2 8 2 3 8 1 8 2 5 8 1 6 2 9 5 7 1 7 8 2 7 7 3
6 3 4 7 6 7 3 7 3 6 3 5 6 3 7 2 6 6 7 7 3 5 6 8 8 6 5 6 5 6 6 6
2 4 3 5 3 7 4 6 3 5 6 4 7 4 6 5 6 7 4 7 2 6 2 8 6 4 4 2 5 3 2 5
6 5 4 6 5 5 5 6 5 5 6 4 5 5 7 5 7 5 5 7 5 5 5 5 5 4 6 5 5 5 3 5
6 6 4 5 6 6 7 9 4 5 5 5 8 9 7 4 9 9 7 6 4 5 6 6 7 5 4 4 4 6 2 6
7 4 3 6 6 8 3 7 2 9 7 4 5 6 4 6 6 7 3 6 3 4 3 7 2 4 6 6 9 7 5 7
2 7 2 7 3 7 3 7 3 8 6 7 6 3 6 2 7 8 3 8 3 8 3 7 2 6 5 5 7 2 2 8
4 3 2 8 7 8 6 8 4 7 3 5 5 6 5 4 6 7 7 8 5 7 5 6 7 7 6 4 7 3 3 7
5 3 2 3 6 2 4 7 2 4 3 4 3 7 7 2 7 5 7 7 3 6 2 6 5 7 3 2 4 5 1 6
2 7 4 9 5 7 3 7 2 6 3 7 5 3 9 2 8 8 7 7 2 7 2 8 3 8 6 2 5 1 1 6
4 5 2 8 6 8 5 9 2 6 2 4 6 7 8 1 6 8 6 9 2 6 5 7 7 8 3 5 6 5 3 6
1 8 5 7 4 6 4 6 6 8 5 7 6 2 6 7 5 7 3 7 4 9 2 7 2 7 6 4 6 4 3 7
3 8 1 8 5 7 5 8 6 3 1 8 8 1 6 3 7 9 4 9 6 9 1 7 2 9 8 3 7 1 1 7
2 6 2 8 2 6 5 7 5 5 2 7 3 1 7 5 7 7 2 7 5 6 1 7 2 8 8 2 5 1 1 5
6 6 7 7 5 5 3 6 3 6 6 4 5 6 6 6 7 6 4 6 5 4 5 5 6 6 6 6 6 6 4 6
4 8 3 7 4 6 3 6 4 6 2 7 6 4 6 5 5 7 3 7 4 8 2 7 2 8 6 3 6 4 3 6
5 8 3 8 7 8 5 9 3 5 1 8 6 3 8 4 7 8 4 9 4 7 2 7 5 7 5 3 3 3 2 5
6 4 2 4 6 6 4 8 6 6 6 4 6 8 4 2 7 6 6 4 3 4 6 6 8 4 4 5 6 6 2 6
7 5 6 5 5 6 6 6 6 6 6 7 7 5 5 4 7 6 5 6 6 6 6 7 7 5 7 4 4 7 4 6
3 7 4 8 6 4 6 6 4 2 6 7 7 3 6 4 7 7 6 8 4 7 2 6 2 8 6 2 3 3 2 4
4 5 5 9 7 7 7 8 2 5 5 3 7 7 9 4 7 7 7 9 3 2 2 8 5 6 7 7 7 4 1 8
2 7 1 8 2 5 7 7 7 6 5 8 5 2 9 5 8 7 9 8 6 7 5 6 2 5 6 5 6 2 1 8
1 5 4 9 9 4 7 8 2 7 8 9 6 2 7 6 8 9 9 8 3 7 5 5 2 6 6 5 7 3 1 2
6 7 6 8 7 8 7 5 4 5 6 6 3 5 6 6 9 6 6 7 5 5 5 7 4 4 6 3 4 5 5 5
2 8 5 8 7 8 5 7 2 4 7 7 7 3 8 2 7 9 8 7 2 9 3 8 2 3 2 2 5 1 1 6
3 7 4 7 4 6 3 7 4 6 4 7 5 3 8 4 6 6 4 7 3 7 3 7 3 7 4 5 4 2 2 4
3 5 1 8 3 6 2 7 3 6 4 7 7 4 8 3 8 7 2 9 3 7 3 8 4 8 5 3 4 4 2 4
7 6 2 8 7 4 6 6 5 3 1 7 4 2 6 6 9 8 7 8 6 8 1 6 5 8 7 5 6 2 3 8
5 6 1 7 5 9 3 9 3 9 1 9 9 2 7 3 9 9 2 9 3 8 3 8 5 9 9 9 9 2 1 9
5 4 7 7 4 3 6 4 4 4 6 5 7 7 5 4 7 7 4 7 6 5 4 7 5 3 4 2 4 6 3 6
4 5 2 8 9 7 8 8 2 3 2 5 5 6 6 2 8 8 8 8 2 4 3 7 7 8 5 2 3 6 3 4
1 6 1 9 2 5 2 8 4 8 2 6 5 2 5 1 9 8 3 9 2 6 2 7 2 6 6 2 4 1 1 4
5 6 5 3 6 8 5 7 7 6 7 6 7 3 7 6 7 7 7 8 6 7 7 7 4 5 7 4 4 5 5 8
7 7 8 7 5 6 3 6 8 7 4 6 4 5 3 7 7 8 7 5 7 6 9 8 7 5 8 7 9 7 4 8
3 7 2 7 6 8 7 6 3 5 1 8 7 3 7 3 6 9 7 7 5 8 5 7 3 9 4 5 6 3 2 7
2 6 3 6 5 7 5 7 2 5 6 6 5 5 5 3 6 7 6 7 3 7 6 7 6 5 3 5 5 3 5 5
2 7 4 7 3 7 3 8 2 5 7 6 8 5 8 3 8 8 2 7 5 7 6 7 5 4 2 7 6 3 4 6
5 8 3 5 7 5 7 7 6 6 5 8 5 5 4 6 5 8 7 7 6 8 7 5 1 6 7 4 4 2 5 6
6 5 4 3 3 7 3 7 3 7 6 4 5 6 6 3 6 6 3 7 4 5 6 6 7 4 5 6 7 6 2 7
3 8 5 6 5 7 4 6 5 7 6 8 6 3 5 4 6 6 5 6 4 7 4 6 2 7 5 5 6 3 4 6
4 6 4 7 3 6 2 7 3 5 5 6 7 6 6 2 6 7 3 7 3 7 2 7 6 7 3 3 6 3 2 7
4 9 3 7 3 5 2 5 6 2 6 7 5 3 6 5 6 6 6 6 5 7 7 6 4 3 6 6 7 4 1 8
1 9 3 9 3 9 1 8 5 9 7 9 9 3 7 3 8 8 5 9 1 7 3 9 3 8 2 9 9 3 1 9
1 6 2 6 4 8 3 7 3 4 1 7 6 4 5 3 6 9 7 8 4 8 5 7 3 9 6 3 1 3 2 5
5 5 2 8 7 6 7 6 4 4 2 6 5 6 8 5 6 6 8 8 4 6 4 6 6 8 7 2 4 6 3 4
2 3 2 5 4 7 5 6 3 6 1 5 7 6 5 1 5 6 3 6 2 5 4 7 5 6 4 4 4 3 2 4
4 4 3 7 2 7 2 7 4 7 6 5 5 7 6 3 6 7 3 8 4 5 3 6 7 5 5 3 5 2 2 7
3 7 2 8 6 9 6 9 1 8 2 6 8 4 9 3 9 9 1 8 7 4 2 7 6 8 7 5 9 2 2 6
3 4 1 9 5 6 4 7 3 4 1 6 7 3 9 3 9 7 4 9 2 6 1 7 4 9 4 1 6 4 1 6
3 6 4 5 3 6 2 3 5 7 8 7 6 2 6 4 6 7 3 8 6 6 4 8 2 3 3 5 7 3 3 7
2 6 6 7 4 7 2 7 2 5 8 6 4 4 3 1 7 7 3 5 1 6 3 6 3 5 4 3 5 1 1 6
1 3 1 7 4 7 2 9 1 5 3 3 9 7 7 1 7 9 3 8 1 6 1 8 5 8 1 2 3 1 1 6
4 9 5 6 3 5 3 6 2 8 6 8 6 2 2 5 7 8 3 7 6 8 7 6 3 6 3 5 6 2 2 5
6 3 5 6 6 6 6 4 5 4 5 3 5 7 5 5 6 4 6 6 5 3 5 5 7 5 6 5 5 6 5 5
6 4 5 6 6 7 6 8 5 7 8 7 7 5 4 2 8 9 7 7 3 7 4 8 6 4 2 4 6 5 2 8
6 4 2 7 3 4 1 5 5 9 4 6 5 3 7 4 6 6 3 6 4 5 4 6 3 6 4 8 8 3 2 8
6 6 2 8 6 5 6 5 5 4 1 4 5 7 7 6 7 5 7 9 5 4 2 5 5 7 6 3 4 6 2 4
3 5 1 8 7 8 4 8 2 8 1 9 7 2 6 2 7 8 5 9 2 7 2 8 4 9 2 7 8 3 2 8
3 6 2 6 6 9 7 9 6 6 3 5 7 3 3 3 6 7 6 8 3 6 7 7 5 6 6 3 5 2 2 8
3 8 3 7 5 7 5 7 3 6 3 9 4 1 4 2 6 9 3 7 2 9 5 7 2 5 3 6 7 2 2 6
4 9 1 9 4 6 5 8 1 2 1 9 7 1 9 3 9 9 8 9 5 9 1 9 1 9 6 4 1 2 1 9
3 6 1 8 6 7 4 9 3 7 2 6 6 3 7 3 9 9 5 8 3 8 4 8 4 8 3 5 5 2 1 6
2 7 2 7 6 9 3 8 2 4 2 7 8 4 8 2 8 8 6 9 4 8 1 8 4 8 6 5 3 2 3 4
6 4 3 7 5 6 4 7 3 7 4 5 7 4 6 5 7 6 5 8 3 6 2 6 4 6 5 4 6 4 4 7
5 7 5 6 7 6 6 6 8 4 5 7 5 3 3 5 6 7 6 7 7 7 7 6 3 5 6 5 3 5 5 6
3 8 6 8 8 7 7 7 5 3 6 7 6 3 7 3 9 7 7 7 4 7 5 6 3 4 6 4 4 3 1 4
3 3 1 8 6 8 6 8 2 4 4 4 6 8 7 2 7 7 6 8 2 7 4 8 6 3 4 3 4 6 3 6
3 7 2 8 7 7 7 7 6 5 2 7 7 5 7 4 7 8 7 8 5 6 3 7 4 7 7 3 5 3 2 6
3 5 3 7 6 7 6 8 6 6 3 7 7 4 6 3 8 8 4 8 3 7 5 8 6 7 3 6 6 4 4 8
5 3 3 8 6 8 5 7 4 4 4 5 5 7 7 4 7 7 6 9 4 4 5 7 7 8 4 5 5 6 3 5
3 4 2 7 5 8 4 8 2 7 1 5 6 5 7 3 8 8 4 9 3 5 5 7 6 8 7 2 6 3 2 6
7 2 3 4 8 7 5 7 3 5 6 3 4 8 6 2 5 6 4 7 4 3 7 7 9 5 4 5 6 7 5 6
6 4 6 5 7 3 8 3 7 2 6 5 4 5 5 6 6 6 8 4 5 7 4 4 6 3 8 5 1 7 3 2
3 7 2 8 5 7 5 6 6 4 2 6 8 6 8 6 7 7 3 8 5 8 4 8 3 9 6 3 3 2 1 3
2 9 4 6 6 7 5 7 4 5 6 7 6 4 5 3 6 7 6 7 4 8 5 6 3 6 5 5 5 3 3 5
2 7 1 8 6 5 4 9 4 5 1 8 6 4 7 2 7 9 6 9 1 7 1 8 3 9 7 1 2 3 1 7
5 3 6 8 5 8 4 7 4 6 6 5 5 5 6 3 6 6 4 7 4 7 3 7 5 6 5 2 7 4 2 8
2 5 6 8 3 6 3 6 3 7 4 5 4 7 8 3 7 7 7 7 2 7 6 7 4 4 7 4 4 5 1 5
5 4 4 7 9 5 7 7 7 4 4 3 3 8 4 6 6 6 8 6 6 5 6 4 7 6 7 3 3 6 6 5
6 6 5 4 7 6 7 8 6 5 7 7 6 7 7 4 5 7 8 9 5 8 8 5 5 6 6 4 4 1 1 3
3 4 2 5 3 5 4 6 5 7 4 5 3 6 3 2 3 6 6 8 4 5 4 7 6 7 7 3 4 5 5 7
6 4 7 7 4 8 5 7 3 7 7 2 6 8 5 6 6 7 7 7 5 6 8 4 5 4 7 5 6 6 6 6
3 5 3 6 6 6 3 8 5 6 6 7 6 3 5 1 6 8 7 7 5 7 4 7 4 3 4 4 7 2 2 7
4 7 2 7 6 8 4 8 2 5 2 8 6 3 8 3 9 8 4 8 2 7 2 7 3 9 2 4 6 4 1 7
3 4 6 8 7 8 6 7 3 4 6 3 3 4 7 6 8 8 6 8 4 5 5 8 4 7 6 5 3 4 2 2
6 5 2 8 4 6 3 7 3 6 2 6 6 3 9 4 8 7 3 8 3 7 1 6 6 9 6 5 4 3 2 6
5 8 5 3 6 9 1 5 5 6 8 8 6 5 4 4 6 7 3 7 1 4 3 4 5 1 3 3 8 6 4 7
4 5 3 7 3 6 3 6 4 7 2 4 6 8 9 6 9 5 3 8 3 5 2 6 6 8 6 4 6 5 2 7
3 6 6 5 6 4 6 5 4 2 8 6 5 7 3 4 6 7 7 7 5 6 6 4 5 2 5 6 3 5 3 5
4 6 7 9 4 7 5 7 3 8 7 6 6 5 6 1 8 7 6 8 3 7 5 7 6 4 2 3 5 4 2 7
6 5 3 6 4 6 4 7 3 8 4 4 5 5 2 2 5 5 4 8 2 7 7 7 5 6 5 5 7 5 3 7
5 4 4 8 7 7 6 8 5 4 4 4 6 8 9 3 6 7 7 8 7 6 6 7 8 7 7 6 6 6 6 6
1 7 1 8 4 8 5 8 4 6 1 7 6 6 8 3 6 7 6 9 1 7 3 9 6 9 3 1 3 1 2 8
6 3 1 7 7 8 3 9 1 6 1 4 7 6 6 2 6 8 6 9 2 5 4 7 9 9 6 3 3 6 3 8
2 8 2 8 3 7 5 7 4 6 1 8 6 2 7 2 7 7 6 9 2 7 3 7 2 9 7 2 5 1 3 6
2 8 2 8 4 7 2 8 2 3 3 9 8 2 5 2 7 9 2 9 3 8 2 8 2 7 2 4 5 2 1 7
4 6 2 8 6 8 7 8 3 5 2 6 7 6 8 2 9 7 8 8 4 7 2 8 7 9 3 2 3 2 1 8
3 4 1 5 4 8 2 8 3 9 2 5 5 5 6 3 4 8 2 7 3 5 7 8 5 6 4 5 5 2 3 7
1 7 3 9 4 7 2 7 3 4 3 8 6 2 8 2 7 8 1 7 2 8 1 7 3 4 5 3 4 2 1 7
3 7 4 6 4 6 5 7 4 8 4 7 6 6 7 3 7 8 2 5 4 7 5 7 4 6 5 4 5 3 2 5
7 4 1 7 3 3 2 6 3 4 1 2 4 1 9 5 7 4 1 9 4 2 1 5 1 9 6 1 3 5 1 3
2 7 3 6 3 7 6 8 2 7 5 7 7 7 7 1 8 8 4 7 2 7 5 7 5 6 2 3 6 1 1 7
4 6 5 7 6 9 5 8 5 6 7 9 6 3 7 6 8 9 5 7 2 9 3 8 2 6 4 6 7 2 2 6
3 7 7 4 2 8 2 8 1 9 8 6 6 5 3 5 2 7 3 3 2 7 7 7 4 2 3 8 8 6 8 9
3 8 2 7 4 7 2 8 3 7 5 7 7 6 5 3 7 5 5 8 4 6 4 7 5 6 6 4 7 4 3 7
2 4 1 7 5 8 5 8 3 5 2 6 5 5 5 1 7 8 8 8 1 8 5 8 4 8 3 1 5 2 2 5
2 9 5 8 2 6 2 9 3 3 5 7 7 3 7 3 9 9 3 8 3 6 4 7 2 7 5 3 3 2 1 7
2 7 1 9 5 5 3 6 3 5 1 9 5 5 5 2 6 8 6 8 3 9 5 6 4 9 6 3 3 1 1 3
2 6 3 7 3 4 2 8 3 6 3 4 7 5 7 5 5 7 2 7 2 7 7 6 5 7 5 7 8 2 1 8
5 5 6 6 3 7 2 5 2 8 7 6 5 7 7 2 6 7 2 6 1 6 3 8 5 3 2 7 8 3 5 8
2 4 1 7 5 9 6 8 1 5 2 7 8 5 7 1 7 9 6 9 1 8 3 9 4 8 2 3 3 1 2 3
2 4 2 7 7 7 4 7 4 7 2 7 7 2 7 4 4 7 5 8 4 8 2 4 6 8 5 3 6 4 2 5
3 6 3 7 5 6 4 7 3 7 3 6 6 5 6 3 8 8 5 8 4 6 4 7 4 7 5 5 6 6 3 7
2 8 3 7 2 7 2 7 2 8 5 7 7 5 7 2 4 7 3 6 2 7 4 6 4 7 2 4 7 3 2 7
4 9 3 9 7 7 5 7 5 5 3 9 7 1 9 3 5 9 3 7 5 9 3 5 2 7 3 3 7 2 1 6
3 8 4 9 7 6 5 6 3 5 3 7 5 5 9 2 8 7 7 8 3 6 1 6 5 7 5 2 5 3 2 7
8 6 7 7 9 9 9 6 8 4 7 5 3 4 7 6 6 7 9 8 8 2 6 8 8 3 9 3 1 7 3 3
Turn in your highest-quality paper
Get a qualified writer to help you with
“ PYTHON PROGAMMING ”
Get high-quality paper
Guarantee! All work is written by expert writers!