CMPEN 462 PSU Basic OFDM Transmitter Report
3GPP TS 36.211 V8.9.0 (2009-12)Technical Specification
3rd Generation Partnership Project;
Technical Specification Group Radio Access Network;
Evolved Universal Terrestrial Radio Access (E-UTRA);
Physical Channels and Modulation
(Release 8)
The present document has been developed within the 3 rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.
The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners’ Publications Offices.
Release 8
2
3GPP TS 36.211 V8.9.0 (2009-12)
Keywords
UMTS, radio, layer 1
3GPP
Postal address
3GPP support office address
650 Route des Lucioles – Sophia Antipolis
Valbonne – FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16
Internet
http://www.3gpp.org
Copyright Notification
No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.
© 2009, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC).
All rights reserved.
UMTS™ is a Trade Mark of ETSI registered for the benefit of its members
3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
LTE™ is a Trade Mark of ETSI currently being registered for the benefit of its Members and of the 3GPP Organizational Partners
GSM® and the GSM logo are registered and owned by the GSM Association
3GPP
Release 8
3
3GPP TS 36.211 V8.9.0 (2009-12)
Contents
Foreword…………………………………………………………………………………………………………………………………………. 6
1
Scope ……………………………………………………………………………………………………………………………………. 7
2
References ……………………………………………………………………………………………………………………………… 7
3
Definitions, symbols and abbreviations ……………………………………………………………………………………… 7
3.1
3.2
4
4.1
4.2
5
5.1
5.1.1
5.1.2
5.2
5.2.1
5.2.2
5.2.3
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.4
5.4.1
5.4.2
5.4.3
5.5
5.5.1
5.5.1.1
Symbols …………………………………………………………………………………………………………………………………………. 7
Abbreviations………………………………………………………………………………………………………………………………….. 9
Frame structure……………………………………………………………………………………………………………………….. 9
Frame structure type 1 ……………………………………………………………………………………………………………………… 9
Frame structure type 2 ……………………………………………………………………………………………………………………. 10
Uplink………………………………………………………………………………………………………………………………….. 11
Overview ……………………………………………………………………………………………………………………………………… 11
Physical channels ……………………………………………………………………………………………………………………… 11
Physical signals ………………………………………………………………………………………………………………………… 11
Slot structure and physical resources ………………………………………………………………………………………………… 12
Resource grid …………………………………………………………………………………………………………………………… 12
Resource elements …………………………………………………………………………………………………………………….. 13
Resource blocks ……………………………………………………………………………………………………………………….. 13
Physical uplink shared channel ………………………………………………………………………………………………………… 13
Scrambling ………………………………………………………………………………………………………………………………. 14
Modulation ………………………………………………………………………………………………………………………………. 14
Transform precoding …………………………………………………………………………………………………………………. 14
Mapping to physical resources ……………………………………………………………………………………………………. 15
Physical uplink control channel ……………………………………………………………………………………………………….. 16
PUCCH formats 1, 1a and 1b ……………………………………………………………………………………………………… 17
PUCCH formats 2, 2a and 2b ……………………………………………………………………………………………………… 19
Mapping to physical resources ……………………………………………………………………………………………………. 20
Reference signals …………………………………………………………………………………………………………………………… 21
Generation of the reference signal sequence …………………………………………………………………………………. 21
RB
Base sequences of length 3N sc
or larger ……………………………………………………………………………….. 22
RB
5.5.1.2
Base sequences of length less than 3N sc
………………………………………………………………………………. 22
5.5.1.3
Group hopping …………………………………………………………………………………………………………………….. 24
5.5.1.4
Sequence hopping ………………………………………………………………………………………………………………… 25
5.5.2
Demodulation reference signal ……………………………………………………………………………………………………. 25
5.5.2.1
Demodulation reference signal for PUSCH ……………………………………………………………………………… 25
5.5.2.1.1
Reference signal sequence ……………………………………………………………………………………………….. 25
5.5.2.1.2
Mapping to physical resources ………………………………………………………………………………………….. 27
5.5.2.2
Demodulation reference signal for PUCCH …………………………………………………………………………….. 27
5.5.2.2.1
Reference signal sequence ……………………………………………………………………………………………….. 27
5.5.2.2.2
Mapping to physical resources ………………………………………………………………………………………….. 28
5.5.3
Sounding reference signal ………………………………………………………………………………………………………….. 28
5.5.3.1
Sequence generation …………………………………………………………………………………………………………….. 28
5.5.3.2
Mapping to physical resources ………………………………………………………………………………………………. 28
5.5.3.3
Sounding reference signal subframe configuration …………………………………………………………………… 31
5.6
SC-FDMA baseband signal generation……………………………………………………………………………………………… 32
5.7
Physical random access channel ………………………………………………………………………………………………………. 33
5.7.1
Time and frequency structure ……………………………………………………………………………………………………… 33
5.7.2
Preamble sequence generation ……………………………………………………………………………………………………. 39
5.7.3
Baseband signal generation ………………………………………………………………………………………………………… 43
5.8
Modulation and upconversion………………………………………………………………………………………………………….. 43
6
6.1
6.1.1
Downlink ……………………………………………………………………………………………………………………………… 44
Overview ……………………………………………………………………………………………………………………………………… 44
Physical channels ……………………………………………………………………………………………………………………… 44
3GPP
Release 8
6.1.2
6.2
6.2.1
6.2.2
6.2.3
6.2.3.1
6.2.3.2
6.2.4
6.2.5
6.2.6
6.3
6.3.1
6.3.2
6.3.3
6.3.3.1
6.3.3.2
6.3.3.3
6.3.4
6.3.4.1
6.3.4.2
6.3.4.2.1
6.3.4.2.2
6.3.4.2.3
6.3.4.3
6.3.5
6.4
6.5
6.6
6.6.1
6.6.2
6.6.3
6.6.4
6.7
6.7.1
6.7.2
6.7.3
6.7.4
6.8
6.8.1
6.8.2
6.8.3
6.8.4
6.8.5
6.9
6.9.1
6.9.2
6.9.3
6.10
6.10.1
6.10.1.1
6.10.1.2
6.10.2
6.10.2.1
6.10.2.2
6.10.3
6.10.3.1
6.10.3.2
6.11
6.11.1
6.11.1.1
6.11.1.2
6.11.2
4
3GPP TS 36.211 V8.9.0 (2009-12)
Physical signals ………………………………………………………………………………………………………………………… 44
Slot structure and physical resource elements ……………………………………………………………………………………. 45
Resource grid …………………………………………………………………………………………………………………………… 45
Resource elements …………………………………………………………………………………………………………………….. 45
Resource blocks ……………………………………………………………………………………………………………………….. 46
Virtual resource blocks of localized type ………………………………………………………………………………… 47
Virtual resource blocks of distributed type ………………………………………………………………………………. 47
Resource-element groups …………………………………………………………………………………………………………… 48
Guard period for half-duplex FDD operation ………………………………………………………………………………… 49
Guard Period for TDD Operation ………………………………………………………………………………………………… 49
General structure for downlink physical channels ………………………………………………………………………………. 49
Scrambling ………………………………………………………………………………………………………………………………. 50
Modulation ………………………………………………………………………………………………………………………………. 50
Layer mapping …………………………………………………………………………………………………………………………. 50
Layer mapping for transmission on a single antenna port ………………………………………………………….. 50
Layer mapping for spatial multiplexing…………………………………………………………………………………… 51
Layer mapping for transmit diversity ……………………………………………………………………………………… 51
Precoding ………………………………………………………………………………………………………………………………… 52
Precoding for transmission on a single antenna port …………………………………………………………………. 52
Precoding for spatial multiplexing………………………………………………………………………………………….. 52
Precoding without CDD …………………………………………………………………………………………………… 52
Precoding for large delay CDD …………………………………………………………………………………………. 52
Codebook for precoding ………………………………………………………………………………………………….. 53
Precoding for transmit diversity …………………………………………………………………………………………….. 54
Mapping to resource elements …………………………………………………………………………………………………….. 55
Physical downlink shared channel ……………………………………………………………………………………………………. 55
Physical multicast channel ………………………………………………………………………………………………………………. 55
Physical broadcast channel ……………………………………………………………………………………………………………… 56
Scrambling ………………………………………………………………………………………………………………………………. 56
Modulation ………………………………………………………………………………………………………………………………. 56
Layer mapping and precoding …………………………………………………………………………………………………….. 56
Mapping to resource elements …………………………………………………………………………………………………….. 56
Physical control format indicator channel …………………………………………………………………………………………. 57
Scrambling ………………………………………………………………………………………………………………………………. 57
Modulation ………………………………………………………………………………………………………………………………. 57
Layer mapping and precoding …………………………………………………………………………………………………….. 58
Mapping to resource elements …………………………………………………………………………………………………….. 58
Physical downlink control channel …………………………………………………………………………………………………… 58
PDCCH formats ……………………………………………………………………………………………………………………….. 58
PDCCH multiplexing and scrambling ………………………………………………………………………………………….. 59
Modulation ………………………………………………………………………………………………………………………………. 59
Layer mapping and precoding …………………………………………………………………………………………………….. 59
Mapping to resource elements …………………………………………………………………………………………………….. 59
Physical hybrid ARQ indicator channel…………………………………………………………………………………………….. 60
Modulation ………………………………………………………………………………………………………………………………. 61
Resource group alignment, layer mapping and precoding ………………………………………………………………. 62
Mapping to resource elements …………………………………………………………………………………………………….. 63
Reference signals …………………………………………………………………………………………………………………………… 65
Cell-specific reference signals…………………………………………………………………………………………………….. 65
Sequence generation …………………………………………………………………………………………………………….. 65
Mapping to resource elements ……………………………………………………………………………………………….. 66
MBSFN reference signals ………………………………………………………………………………………………………….. 68
Sequence generation …………………………………………………………………………………………………………….. 68
Mapping to resource elements ……………………………………………………………………………………………….. 68
UE-specific reference signals ……………………………………………………………………………………………………… 70
Sequence generation …………………………………………………………………………………………………………….. 70
Mapping to resource elements ……………………………………………………………………………………………….. 71
Synchronization signals ………………………………………………………………………………………………………………….. 72
Primary synchronization signal …………………………………………………………………………………………………… 73
Sequence generation …………………………………………………………………………………………………………….. 73
Mapping to resource elements ……………………………………………………………………………………………….. 73
Secondary synchronization signal ……………………………………………………………………………………………….. 73
3GPP
Release 8
6.11.2.1
6.11.2.2
6.12
6.13
7
7.1
7.1.1
7.1.2
7.1.3
7.1.4
7.2
8
8.1
5
3GPP TS 36.211 V8.9.0 (2009-12)
Sequence generation …………………………………………………………………………………………………………….. 73
Mapping to resource elements ……………………………………………………………………………………………….. 75
OFDM baseband signal generation …………………………………………………………………………………………………… 76
Modulation and upconversion………………………………………………………………………………………………………….. 76
Generic functions ………………………………………………………………………………………………………………….. 77
Modulation mapper ………………………………………………………………………………………………………………………… 77
BPSK …………………………………………………………………………………………………………………………………………… 77
QPSK …………………………………………………………………………………………………………………………………………… 77
16QAM ………………………………………………………………………………………………………………………………………… 78
64QAM ………………………………………………………………………………………………………………………………………… 78
Pseudo-random sequence generation ………………………………………………………………………………………………… 79
Timing …………………………………………………………………………………………………………………………………. 80
Uplink-downlink frame timing ………………………………………………………………………………………………………… 80
Annex A (informative):
Change history ………………………………………………………………………………….. 81
3GPP
Release 8
6
3GPP TS 36.211 V8.9.0 (2009-12)
Foreword
This Technical Specification has been produced by the 3 rd Generation Partnership Project (3GPP).
The contents of the present document are subject to continuing work within the TSG and may change following formal
TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an
identifying change of release date and an increase in version number as follows:
Version x.y.z
where:
x the first digit:
1 presented to TSG for information;
2 presented to TSG for approval;
3 or greater indicates TSG approved document under change control.
y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections,
updates, etc.
z the third digit is incremented when editorial only changes have been incorporated in the document.
3GPP
Release 8
1
7
3GPP TS 36.211 V8.9.0 (2009-12)
Scope
The present document describes the physical channels for evolved UTRA.
2
References
The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.
• References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.
• For a specific reference, subsequent revisions do not apply.
• For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including
a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same
Release as the present document.
[1]
3GPP TR 21.905: “Vocabulary for 3GPP Specifications”.
[2]
3GPP TS 36.201: “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Layer –
General Description”.
[3]
3GPP TS 36.212: “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and
channel coding”.
[4]
3GPP TS 36.213: “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer
procedures”.
[5]
3GPP TS 36.214: “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer –
Measurements”.
[6]
3GPP TS 36.104: “Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS)
radio transmission and reception”.
[7]
3GPP TS 36.101: “Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE)
radio transmission and reception”.
[8]
3GPP TS36.321, “Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access
Control (MAC) protocol specification”
3
Definitions, symbols and abbreviations
3.1
Symbols
For the purposes of the present document, the following symbols apply:
(k , l )
Resource element with frequency-domain index k and time-domain index l
a k( ,pl )
Value of resource element (k , l ) [for antenna port p ]
D
DRA
Matrix for supporting cyclic delay diversity
Density of random access opportunities per radio frame
f0
Carrier frequency
3GPP
Release 8
8
3GPP TS 36.211 V8.9.0 (2009-12)
f RA
PRACH resource frequency index within the considered time domain location
PUSCH
M sc
PUSCH
M RB
(q)
M bit
( q)
M symb
Scheduled bandwidth for uplink transmission, expressed as a number of subcarriers
layer
M symb
Number of modulation symbols to transmit per layer for a physical channel
ap
M symb
Number of modulation symbols to transmit per antenna port for a physical channel
N
N CP ,l
A constant equal to 2048 for f = 15 kHz and 4096 for f = 7.5 kHz
Downlink cyclic prefix length for OFDM symbol l in a slot
N cs(1)
Number of cyclic shifts used for PUCCH formats 1/1a/1b in a resource block with a mix of
formats 1/1a/1b and 2/2a/2b
RB
Bandwidth available for use by PUCCH formats 2/2a/2b, expressed in multiples of Nsc
(2)
N RB
HO
N RB
Scheduled bandwidth for uplink transmission, expressed as a number of resource blocks
Number of coded bits to transmit on a physical channel [for code word q ]
Number of modulation symbols to transmit on a physical channel [for code word q ]
cell
N ID
The offset used for PUSCH frequency hopping, expressed in number of resource blocks (set by
higher layers)
Physical layer cell identity
MBSFN
N ID
MBSFN area identity
DL
N RB
min, DL
N RB
max, DL
N RB
UL
N RB
min, UL
N RB
max, UL
N RB
DL
N symb
RB
Downlink bandwidth configuration, expressed in multiples of Nsc
UL
N symb
Number of SC-FDMA symbols in an uplink slot
RB
Nsc
Resource block size in the frequency domain, expressed as a number of subcarriers
N SP
Number of downlink to uplink switch points within the radio frame
PUCCH
N RS
Number of reference symbols per slot for PUCCH
N TA
N TA offset
Timing offset between uplink and downlink radio frames at the UE, expressed in units of Ts
(1)
nPUCCH
( 2)
nPUCCH
Resource index for PUCCH formats 1/1a/1b
nPDCCH
nPRB
Number of PDCCHs present in a subframe
n
n
RA
PRB
RA
PRB offset
RB
Smallest downlink bandwidth configuration, expressed in multiples of Nsc
RB
Largest downlink bandwidth configuration, expressed in multiples of Nsc
RB
Uplink bandwidth configuration, expressed in multiples of Nsc
RB
Smallest uplink bandwidth configuration, expressed in multiples of Nsc
RB
Largest uplink bandwidth configuration, expressed in multiples of Nsc
Number of OFDM symbols in a downlink slot
Fixed timing advance offset, expressed in units of Ts
Resource index for PUCCH formats 2/2a/2b
Physical resource block number
First physical resource block occupied by PRACH resource considered
First physical resource block available for PRACH
nVRB
nRNTI
nf
ns
P
p
q
Virtual resource block number
rRA
Index for PRACH versions with same preamble format and PRACH density
Radio network temporary identifier
System frame number
Slot number within a radio frame
Number of cell-specific antenna ports
Antenna port number
Code word number
3GPP
Release 8
9
3GPP TS 36.211 V8.9.0 (2009-12)
Qm
sl( p ) (t )
Modulation order: 2 for QPSK, 4 for 16QAM and 6 for 64QAM transmissions
Time-continuous baseband signal for antenna port p and OFDM symbol l in a slot
0
t RA
t 1RA
2
t RA
Radio frame indicator index of PRACH opportunity
Tf
Ts
Tslot
W
Radio frame duration
PRACH
PUCCH
PUSCH
SRS
f
f RA
3.2
Half frame index of PRACH opportunity within the radio frame
Uplink subframe number for start of PRACH opportunity within the half frame
Basic time unit
Slot duration
Precoding matrix for downlink spatial multiplexing
Amplitude scaling for PRACH
Amplitude scaling for PUCCH
Amplitude scaling for PUSCH
Amplitude scaling for sounding reference symbols
Subcarrier spacing
Subcarrier spacing for the random access preamble
Number of transmission layers
Abbreviations
For the purposes of the present document, the following abbreviations apply:
CCE
CDD
PBCH
PCFICH
PDCCH
PDSCH
PHICH
PMCH
PRACH
PUCCH
PUSCH
4
Control Channel Element
Cyclic Delay Diversity
Physical broadcast channel
Physical control format indicator channel
Physical downlink control channel
Physical downlink shared channel
Physical hybrid-ARQ indicator channel
Physical multicast channel
Physical random access channel
Physical uplink control channel
Physical uplink shared channel
Frame structure
Throughout this specification, unless otherwise noted, the size of various fields in the time domain is expressed as a
number of time units Ts = 1 (15000 2048 ) seconds.
Downlink and uplink transmissions are organized into radio frames with Tf = 307200 Ts = 10 ms duration. Two radio
frame structures are supported:
–
Type 1, applicable to FDD,
–
Type 2, applicable to TDD.
4.1
Frame structure type 1
Frame structure type 1 is applicable to both full duplex and half duplex FDD. Each radio frame is
Tf = 307200 Ts = 10 ms long and consists of 20 slots of length Tslot = 15360 Ts = 0.5 ms , numbered from 0 to 19. A
subframe is defined as two consecutive slots where subframe i consists of slots 2i and 2i + 1 .
3GPP
Release 8
10
3GPP TS 36.211 V8.9.0 (2009-12)
For FDD, 10 subframes are available for downlink transmission and 10 subframes are available for uplink transmissions
in each 10 ms interval. Uplink and downlink transmissions are separated in the frequency domain. In half-duplex FDD
operation, the UE cannot transmit and receive at the same time while there are no such restrictions in full-duplex FDD.
One radio frame, Tf = 307200Ts = 10 ms
One slot, Tslot = 15360Ts = 0.5 ms
#0
#1
#2
#3
#18
#19
One subframe
Figure 4.1-1: Frame structure type 1.
4.2
Frame structure type 2
Frame structure type 2 is applicable to TDD. Each radio frame of length Tf = 307200 Ts = 10 ms consists of two halfframes of length 153600 Ts = 5 ms each. Each half-frame consists of five subframes of length 30720 Ts = 1 ms . The
supported uplink-downlink configurations are listed in Table 4.2-2 where, for each subframe in a radio frame, “D”
denotes the subframe is reserved for downlink transmissions, “U” denotes the subframe is reserved for uplink
transmissions and “S” denotes a special subframe with the three fields DwPTS, GP and UpPTS. The length of DwPTS
and UpPTS is given by Table 4.2-1 subject to the total length of DwPTS, GP and UpPTS being equal
to 30720 Ts = 1 ms . Each subframe i is defined as two slots, 2i and 2i + 1 of length Tslot = 15360 Ts = 0.5 ms in each
subframe.
Uplink-downlink configurations with both 5 ms and 10 ms downlink-to-uplink switch-point periodicity are supported.
In case of 5 ms downlink-to-uplink switch-point periodicity, the special subframe exists in both half-frames.
In case of 10 ms downlink-to-uplink switch-point periodicity, the special subframe exists in the first half-frame only.
Subframes 0 and 5 and DwPTS are always reserved for downlink transmission. UpPTS and the subframe immediately
following the special subframe are always reserved for uplink transmission.
One radio frame, Tf = 307200Ts = 10 ms
One half-frame, 153600Ts = 5 ms
One slot,
30720Ts
Tslot=15360Ts
Subframe #0
Subframe #2
Subframe #3
Subframe #4
Subframe #5
Subframe #7
One
subframe,
30720Ts
DwPTS
GP
UpPT
S
DwPTS
GP
Subframe #8
UpPT
S
Figure 4.2-1: Frame structure type 2 (for 5 ms switch-point periodicity).
3GPP
Subframe #9
Release 8
11
3GPP TS 36.211 V8.9.0 (2009-12)
Table 4.2-1: Configuration of special subframe (lengths of DwPTS/GP/UpPTS).
Special subframe
configuration
Normal cyclic prefix in downlink
DwPTS
UpPTS
Normal
Extended
cyclic prefix
cyclic prefix
in uplink
in uplink
Extended cyclic prefix in downlink
DwPTS
UpPTS
Normal cyclic
Extended cyclic
prefix in uplink
prefix in uplink
0
6592 Ts
7680 Ts
1
19760 Ts
20480 Ts
2
21952 Ts
3
24144 Ts
25600 Ts
4
26336 Ts
7680 Ts
5
6592 Ts
20480 Ts
6
19760 Ts
7
21952 Ts
8
24144 Ts
2192 Ts
4384 Ts
23040 Ts
2560 Ts
2192 Ts
2560 Ts
4384 Ts
5120 Ts
23040 Ts
5120 Ts
–
–
–
–
–
–
Table 4.2-2: Uplink-downlink configurations.
Uplink-downlink
configuration
0
1
2
3
4
5
6
5
Uplink
5.1
Overview
Downlink-to-Uplink
Switch-point periodicity
5 ms
5 ms
5 ms
10 ms
10 ms
10 ms
5 ms
0
D
D
D
D
D
D
D
1
S
S
S
S
S
S
S
2
U
U
U
U
U
U
U
Subframe number
3 4 5 6 7
U U D S U
U D D S U
D D D S U
U U D D D
U D D D D
D D D D D
U U D S U
8
U
U
D
D
D
D
U
9
U
D
D
D
D
D
D
The smallest resource unit for uplink transmissions is denoted a resource element and is defined in section 5.2.2.
5.1.1
Physical channels
An uplink physical channel corresponds to a set of resource elements carrying information originating from higher
layers and is the interface defined between 36.212 and 36.211. The following uplink physical channels are defined:
–
Physical Uplink Shared Channel, PUSCH
–
Physical Uplink Control Channel, PUCCH
–
Physical Random Access Channel, PRACH
5.1.2
Physical signals
An uplink physical signal is used by the physical layer but does not carry information originating from higher layers.
The following uplink physical signals are defined:
–
Reference signal
3GPP
Release 8
12
3GPP TS 36.211 V8.9.0 (2009-12)
5.2
Slot structure and physical resources
5.2.1
Resource grid
UL
UL RB
The transmitted signal in each slot is described by a resource grid of N RB
SC-FDMA
N sc subcarriers and N symb
UL
symbols. The resource grid is illustrated in Figure 5.2.1-1. The quantity N RB
depends on the uplink transmission
bandwidth configured in the cell and shall fulfil
min, UL
UL
max, UL
N RB
N RB
N RB
max, UL
min, UL
where N RB
= 110 is the smallest and largest uplink bandwidth, respectively, supported by the
= 6 and N RB
UL
current version of this specification. The set of allowed values for N RB
is given by [7].
The number of SC-FDMA symbols in a slot depends on the cyclic prefix length configured by higher layers and is
given in Table 5.2.3-1.
One uplink slot Tslot
UL
N symb
SC-FDMA symbols
UL RB
k = N RB
N sc − 1
Resource
element
N scRB
UL
N scRB
N RB
subcarrier
s
subcarrier
s
Resource
block
resource
UL
N symb
N scRB
elements
k =0
l=0
l=
UL
N symb
−1
Figure 5.2.1-1: Uplink resource grid.
3GPP
(k , l )
Release 8
5.2.2
13
3GPP TS 36.211 V8.9.0 (2009-12)
Resource elements
Each element in the resource grid is called a resource element and is uniquely defined by the index pair (k, l ) in a slot
UL
UL RB
− 1 are the indices in the frequency and time domain, respectively.
where k = 0,…,N RB
Nsc −1 and l = 0,…, N symb
Resource element (k, l ) corresponds to the complex value a k ,l . Quantities a k ,l corresponding to resource elements not
used for transmission of a physical channel or a physical signal in a slot shall be set to zero.
5.2.3
Resource blocks
UL
A physical resource block is defined as N symb
consecutive SC-FDMA symbols in the time domain and
UL
RB
RB
consecutive subcarriers in the frequency domain, where N symb
and N sc
are given by Table 5.2.3-1. A physical
N sc
UL
RB
N sc
resource block in the uplink thus consists of N symb
resource elements, corresponding to one slot in the time
domain and 180 kHz in the frequency domain.
Table 5.2.3-1: Resource block parameters.
Configuration
RB
Nsc
UL
N symb
12
12
7
6
Normal cyclic prefix
Extended cyclic prefix
The relation between the physical resource block number nPRB in the frequency domain and resource elements (k , l ) in
a slot is given by
k
nPRB = RB
N sc
5.3
Physical uplink shared channel
The baseband signal representing the physical uplink shared channel is defined in terms of the following steps:
–
scrambling
–
modulation of scrambled bits to generate complex-valued symbols
–
transform precoding to generate complex-valued symbols
–
mapping of complex-valued symbols to resource elements
–
generation of complex-valued time-domain SC-FDMA signal for each antenna port
Scrambling
Modulation
mapper
Transform
precoder
Resource
element mapper
Figure 5.3-1: Overview of uplink physical channel processing.
3GPP
SC-FDMA
signal gen.
Release 8
5.3.1
14
3GPP TS 36.211 V8.9.0 (2009-12)
Scrambling
The block of bits b(0),…, b(M bit − 1) , where M bit is the number of bits transmitted on the physical uplink shared
channel in one subframe, shall be scrambled with a UE-specific scrambling sequence prior to modulation, resulting in a
~
~
block of scrambled bits b (0),…,b (M bit − 1) according to the following pseudo code
Set i = 0
while i < Mbit
if b(i) = x
// ACK/NAK or Rank Indication placeholder bits
~
b (i) = 1
else
if b(i ) = y // ACK/NAK or Rank Indication repetition placeholder bits
~
~
b (i) = b (i − 1)
Else
// Data or channel quality coded bits, Rank Indication coded bits or ACK/NAK coded bits
~
b (i) = (b(i) + c(i)) mod 2
end if
end if
i=i+1
end while
where x and y are tags defined in [3] section 5.2.2.6 and where the scrambling sequence c(i ) is given by Section 7.2.
cell
The scrambling sequence generator shall be initialised with cinit = nRNTI 214 + ns 2 29 + N ID
at the start of each
subframe where
5.3.2
nRNTI corresponds to the RNTI associated with the PUSCH transmission as described in Section 8[4].
Modulation
~
~
The block of scrambled bits b (0),...,b (M bit − 1) shall be modulated as described in Section 7.1, resulting in a block of
complex-valued symbols d (0),...,d (M symb − 1) . Table 5.3.2-1 specifies the modulation mappings applicable for the
physical uplink shared channel.
Table 5.3.2-1: Uplink modulation schemes
Physical channel
PUSCH
5.3.3
Modulation schemes
QPSK, 16QAM, 64QAM
Transform precoding
PUSCH
The block of complex-valued symbols d (0),...,d (M symb − 1) is divided into M symb M sc
sets, each corresponding
to one SC-FDMA symbol. Transform precoding shall be applied according to
3GPP
Release 8
15
PUSCH
z (l M sc
+ k) =
3GPP TS 36.211 V8.9.0 (2009-12)
PUSCH
M sc
−1
1
PUSCH
M sc
PUSCH
d (l M sc
+ i )e
−j
2ik
PUSCH
M sc
i =0
PUSCH
k = 0,..., M sc
−1
PUSCH
l = 0,..., M symb M sc
−1
PUSCH
PUSCH
RB
resulting in a block of complex-valued symbols z(0),...,z(M symb − 1) . The variable M sc
, where
= M RB
Nsc
PUSCH
represents the bandwidth of the PUSCH in terms of resource blocks, and shall fulfil
M RB
PUSCH
UL
M RB
= 2 2 3 3 5 5 N RB
where 2 , 3 , 5 is a set of non-negative integers.
5.3.4
Mapping to physical resources
The block of complex-valued symbols z(0),...,z(M symb − 1) shall be multiplied with the amplitude scaling factor
PUSCH in order to conform to the transmit power PPUSCH specified in Section 5.1.1.1 in [4], and mapped in sequence
starting with z (0) to physical resource blocks assigned for transmission of PUSCH. The mapping to resource elements
(k, l ) corresponding to the physical resource blocks assigned for transmission and not used for transmission of
reference signals and not reserved for possible SRS transmission shall be in increasing order of first the index k , then
the index l , starting with the first slot in the subframe.
If uplink frequency-hopping is disabled, the set of physical resource blocks to be used for transmission are given by
nPRB = nVRB where nVRB is obtained from the uplink scheduling grant as described in Section 8.1 in [4].
If uplink frequency-hopping with type 1 PUSCH hopping is enabled, the set of physical resource blocks to be used for
transmission are given by Section 8.4.1 in [4].
If uplink frequency-hopping with predefined hopping pattern is enabled, the set of physical resource blocks to be used
for transmission in slot ns is given by the scheduling grant together with a predefined pattern according to
(
((
) (
))
)
sb
sb
sb
sb
n~PRB (ns ) = n~VRB + f hop (i ) N RB
+ N RB
− 1 − 2 n~VRB mod N RB
f m (i ) mod( N RB
N sb )
n 2 inter − subframe hopping
i= s
intra and inter − subframe hopping
ns
~
nPRB (ns )
N sb = 1
nPRB (ns ) = ~
HO
N sb 1
nPRB (ns ) + N RB 2
nVRB
N sb = 1
n~VRB =
HO
N sb 1
nVRB − N RB 2
where nVRB is obtained from the scheduling grant as described in Section 8.1 in [4]. The parameter puschHO
sb
HoppingOffset, N RB
, is provided by higher layers.. The size N RB
of each sub-band is given by,
sb
N RB
=
(
UL
N RB
UL
N RB
−
HO
N RB
−
HO
N RB
)
mod 2 N sb
N sb = 1
N sb 1
where the number of sub-bands N sb is given by higher layers. The function f m (i) 0,1 determines whether mirroring
is used or not. The parameter Hopping-mode provided by higher layers determines if hopping is “inter-subframe” or
“intra and inter-subframe”.
3GPP
Release 8
16
The hopping function f hop (i) and the function
3GPP TS 36.211 V8.9.0 (2009-12)
f m (i) are given by
0
N sb = 1
i10+9
k −( i10+1)
) mod N sb N sb = 2
( f hop (i − 1) + c(k ) 2
f hop (i ) =
k =i10+1
i10+9
( f hop (i − 1) + c(k ) 2 k −( i10+1) mod( N sb − 1) + 1) mod N sb
k =i10+1
N sb 2
N sb = 1 and intra and inter − subframe hopping
i mod 2
f m (i ) = CURRENT _ TX _ NB mod 2 N sb = 1 and inter − subframe hopping
c(i 10 )
N sb 1
where
f hop (−1) =0 and the pseudo-random sequence c(i) is given by section 7.2 and CURRENT_TX_NB indicates
the transmission number for the transport block transmitted in slot ns as defined in [8]. The pseudo-random sequence
generator shall be initialised with
cell
9
cell
cinit = N ID
for FDD and cinit = 2 (n f mod 4) + NID for TDD at the start of
each frame.
5.4
Physical uplink control channel
The physical uplink control channel, PUCCH, carries uplink control information. The PUCCH is never transmitted
simultaneously with the PUSCH from the same UE. For frame structure type 2, the PUCCH is not transmitted in the
UpPTS field.
The physical uplink control channel supports multiple formats as shown in Table 5.4-1. Formats 2a and 2b are
supported for normal cyclic prefix only.
Table 5.4-1: Supported PUCCH formats.
PUCCH
format
1
1a
1b
2
2a
2b
Modulation
scheme
N/A
BPSK
QPSK
QPSK
QPSK+BPSK
QPSK+QPSK
Number of bits per
subframe, M bit
N/A
1
2
20
21
22
cell
All PUCCH formats use a cyclic shift of a sequence in each symbol, where ncs
(ns , l ) is used to derive the cyclic shift
cell
for the different PUCCH formats. The quantity ncs
(ns , l ) varies with the symbol number l and the slot number ns
according to
cell
ncs
(ns , l ) =
7
UL
c(8Nsymb
ns
i =0
+ 8l + i) 2i
where the pseudo-random sequence c(i ) is defined by section 7.2. The pseudo-random sequence generator shall be
initialized with cinit = N ID at the beginning of each radio frame.
cell
(2)
(1)
The physical resources used for PUCCH depends on two parameters, N RB
and N cs
, given by higher layers. The
(2)
variable N RB
0 denotes the bandwidth in terms of resource blocks that are available for use by PUCCH formats
2/2a/2b transmission in each slot. The variable N cs(1) denotes the number of cyclic shift used for PUCCH formats
1/1a/1b in a resource block used for a mix of formats 1/1a/1b and 2/2a/2b. The value of N cs(1) is an integer multiple of
within the range of {0, 1, …, 7}, where PUCCH
is provided by higher layers. No mixed resource block is
PUCCH
shift
shift
3GPP
Release 8
17
3GPP TS 36.211 V8.9.0 (2009-12)
(1)
present if N cs
= 0 . At most one resource block in each slot supports a mix of formats 1/1a/1b and 2/2a/2b. Resources
(1)
used for transmission of PUCCH format 1/1a/1b and 2/2a/2b are represented by the non-negative indices nPUCCH
and
N (1)
(2)
(2) RB
RB
n PUCCH
N RB
N sc + cs ( N sc
− N cs(1) − 2) , respectively.
8
5.4.1
PUCCH formats 1, 1a and 1b
For PUCCH format 1, information is carried by the presence/absence of transmission of PUCCH from the UE. In the
remainder of this section, d (0) = 1 shall be assumed for PUCCH format 1.
For PUCCH formats 1a and 1b, one or two explicit bits are transmitted, respectively. The block of bits
b(0),..., b(M bit − 1) shall be modulated as described in Table 5.4.1-1, resulting in a complex-valued symbol d (0) . The
modulation schemes for the different PUCCH formats are given by Table 5.4-1.
PUCCH
= 12 sequence ru(,v ) (n)
The complex-valued symbol d (0) shall be multiplied with a cyclically shifted length N seq
according to
y (n) = d (0) ru(,v ) (n),
PUCCH
n = 0,1,..., N seq
−1
RS
PUCCH
= N seq
where ru(,v ) (n) is defined by section 5.5.1 with M sc
. The cyclic shift varies between symbols and slots as
defined below.
PUCCH
− 1) shall be scrambled by S (ns ) and block-wise spread with
The block of complex-valued symbols y (0),..., y ( N seq
the orthogonal sequence wnoc (i) according to
(
)
PUCCH
PUCCH
PUCCH
z m' N SF
N seq
+ m N seq
+ n = S (n s ) wnoc (m) y (n )
where
PUCCH
m = 0,..., N SF
−1
PUCCH
n = 0,..., N seq
−1
m' = 0,1
and
1
S ( n s ) = j
e
2
if n' (n S ) mod 2 = 0
otherwise
PUCCH
PUCCH
with NSF
= 4 for both slots of normal PUCCH formats 1/1a/1b, and NSF
= 4 for the first slot and
PUCCH
N SF
= 3 for the second slot of shortened PUCCH formats 1/1a/1b. The sequence wnoc (i) is given by Table 5.4.1-2
and Table 5.4.1-3 and n' (ns ) is defined below.
(1)
Resources used for transmission of PUCCH format 1, 1a and 1b are identified by a resource index nPUCCH
from which
the orthogonal sequence index noc (ns ) and the cyclic shift (ns , l ) are determined according to
3GPP
Release 8
18
n(n ) PUCCH N
s
shift
noc (ns )=
N
2 n(ns ) PUCCH
shift
3GPP TS 36.211 V8.9.0 (2009-12)
for normal cyclic prefix
for extended cyclic prefix
(ns , l )= 2 ncs (ns , l ) N scRB
(
(
(
))
n cell (n , l ) + n(n ) PUCCH + n (n ) mod PUCCH mod N mod N RB
cs s
s
shift
oc s
shift
sc
ncs (ns , l )=
cell
PUCCH
RB
ncs (ns , l ) + n(ns ) shift + noc (ns ) 2 mod N mod N sc
)
for normal cyclic prefix
for extended cyclic prefix
where
(1)
N (1) if nPUCCH
c N cs(1) PUCCH
shift
N = csRB
N sc otherwise
3 normal cyclic prefix
c=
2 extended cyclic prefix
The resource indices within the two resource blocks in the two slots of a subframe to which the PUCCH is mapped are
given by
(1)
n
n(ns ) = PUCCH
(1)
(1)
PUCCH
RB
PUCCH
nPUCCH − c N cs shift mod c N sc shift
(
) (
)
(1)
if nPUCCH
c N cs(1) PUCCH
shift
otherwise
for ns mod 2 = 0 and by
(
)
(1)
c(n(ns − 1) + 1) mod cN scRB PUCCH
+ 1 − 1 nPUCCH
c N cs(1) PUCCH
shift
shift
n(ns ) =
PUCCH
(
)
h
/
c
+
h
mod
c
N
'
/
otherwise
shift
(
)
for ns mod 2 = 1 , where h = (n' (ns − 1) + d ) mod cN ' / PUCCH
, with
shift
d = 2 for normal CP and d = 0 for extended CP.
The parameter deltaPUCCH-Shift PUCCH
is provided by higher layers.
shift
Table 5.4.1-1: Modulation symbol d (0) for PUCCH formats 1a and 1b.
PUCCH format
b(0),..., b(M bit − 1)
0
1
00
01
1a
1b
10
11
3GPP
d (0)
1
−1
1
−j
j
−1
Release 8
19
3GPP TS 36.211 V8.9.0 (2009-12)
PUCCH
− 1)
Table 5.4.1-2: Orthogonal sequences w(0) w( N SF
PUCCH
− 1)
Orthogonal sequences w(0) w( N SF
Sequence index noc (ns )
+ 1
+ 1
+ 1
0
1
2
− 1 + 1 − 1
− 1 − 1 + 1
PUCCH
for N SF
= 3.
PUCCH
− 1)
Orthogonal sequences w(0) w( N SF
Sequence index noc (ns )
1
0
+ 1 + 1 + 1
PUCCH
− 1)
Table 5.4.1-3: Orthogonal sequences w(0) w( N SF
5.4.2
PUCCH
for NSF
= 4.
1 1
1
1
e j 2
3
e j 4
3
2
1
e j 4
3
e j 2
3
PUCCH formats 2, 2a and 2b
The block of bits b(0),..., b(19) shall be scrambled with a UE-specific scrambling sequence, resulting in a block of
~
~
scrambled bits b (0),..., b (19) according to
~
b (i) = (b(i) + c(i))mod 2
where the scrambling sequence c(i ) is given by Section 7.2. The scrambling sequence generator shall be initialised with
(
)
cell
cinit = (ns 2 + 1) 2 N ID
+ 1 216 + nRNTI at the start of each subframe where nRNTI is C-RNTI.
~
~
The block of scrambled bits b (0),...,b (19) shall be QPSK modulated as described in Section 7.1, resulting in a block of
complex-valued modulation symbols d (0),..., d (9) .
PUCCH
= 12 sequence
Each complex-valued symbol d (0),..., d (9) shall be multiplied with a cyclically shifted length N seq
ru(,v ) (n) according to
PUCCH
z ( N seq
n + i ) = d (n) ru(,v ) (i )
n = 0,1,..., 9
RB
i = 0,1,..., N sc
−1
RS
PUCCH
= N seq
where ru(,v ) (i ) is defined by section 5.5.1 with M sc
.
(2)
Resources used for transmission of PUCCH formats 2/2a/2b are identified by a resource index nPUCCH
from which the
cyclic shift (ns , l ) is determined according to
(ns , l ) = 2 ncs (ns , l ) N scRB
where
3GPP
Release 8
20
3GPP TS 36.211 V8.9.0 (2009-12)
(
)
RB
ncs (ns , l ) = ncscell (ns , l ) + n' (ns ) mod N SC
and
n (2) mod N scRB
n' (ns ) = PUCCH
(2)
(1)
RB
nPUCCH + N cs + 1 mod N sc
(
( 2)
(2)
if nPUCCH
N scRB N RB
)
otherwise
for ns mod 2 = 0 and by
(
)
(
)
( 2)
(2)
N RB (n' (ns − 1) + 1) mod N scRB + 1 − 1 if nPUCCH
N scRB N RB
n' (ns ) = scRB
( 2)
RB
otherwise
N sc − 2 − nPUCCH mod N sc
for ns mod 2 = 1 .
For PUCCH formats 2a and 2b, supported for normal cyclic prefix only, the bit(s) b(20),..., b(M bit − 1) shall be
modulated as described in Table 5.4.2-1 resulting in a single modulation symbol d (10 ) used in the generation of the
reference-signal for PUCCH format 2a and 2b as described in Section 5.5.2.2.1.
Table 5.4.2-1: Modulation symbol d (10 ) for PUCCH formats 2a and 2b.
PUCCH format
b(20),..., b(M bit − 1)
0
1
00
01
2a
2b
5.4.3
10
11
d (10 )
1
−1
1
−j
j
−1
Mapping to physical resources
The block of complex-valued symbols z (i) shall be multiplied with the amplitude scaling factor PUCCH in order to
conform to the transmit power
PPUCCH specified in Section 5.1.2.1 in [4], and mapped in sequence starting with z (0) to
resource elements. PUCCH uses one resource block in each of the two slots in a subframe. Within the physical resource
block used for transmission, the mapping of z (i) to resource elements (k, l ) not used for transmission of reference
signals shall be in increasing order of first k , then l and finally the slot number, starting with the first slot in the
subframe.
The physical resource blocks to be used for transmission of PUCCH in slot ns is given by
nPRB
m
2
=
N UL − 1 − m
2
RB
if (m + ns mod 2) mod 2 = 0
if (m + ns mod 2) mod 2 = 1
where the variable m depends on the PUCCH format. For formats 1, 1a and 1b
3GPP
Release 8
21
3GPP TS 36.211 V8.9.0 (2009-12)
(2)
(1)
N RB
if n PUCCH
c N cs(1) PUCCH
shift
(1)
(1)
PUCCH
(1)
m = n PUCCH − c N cs shift
N
(2)
+ cs otherwise
+ N RB
RB
PUCCH
c N sc shift
8
3 normal cyclic prefix
c=
2 extended cyclic prefix
and for formats 2, 2a and 2b
(2)
RB
m = nPUCCH
Nsc
Mapping of modulation symbols for the physical uplink control channel is illustrated in Figure 5.4.3-1.
In case of simultaneous transmission of sounding reference signal and PUCCH format 1, 1a or 1b, one SC-FDMA
symbol on PUCCH shall punctured.
UL
nPRB = N RB
−1
nPRB = 0
m =1
m=3
m=0
m=2
m=2
m=0
m=3
m =1
One subframe
Figure 5.4.3-1: Mapping to physical resource blocks for PUCCH.
5.5
Reference signals
Two types of uplink reference signals are supported:
-
Demodulation reference signal, associated with transmission of PUSCH or PUCCH
-
Sounding reference signal, not associated with transmission of PUSCH or PUCCH
The same set of base sequences is used for demodulation and sounding reference signals.
5.5.1
Generation of the reference signal sequence
Reference signal sequence ru(,v ) (n) is defined by a cyclic shift of a base sequence ru ,v ( n) according to
RS
ru(,v ) (n) = e jn ru ,v (n), 0 n M sc
max, UL
RS
RB
where M sc
is the length of the reference signal sequence and 1 m N RB
. Multiple reference signal
= mNsc
sequences are defined from a single base sequence through different values of .
Base sequences ru ,v ( n) are divided into groups, where u 0,1,..., 29 is the group number and v is the base sequence
RS
RB
number within the group, such that each group contains one base sequence ( v = 0 ) of each length M sc
,
= mNsc
RS
RB
max, UL
1 m 5 and two base sequences ( v = 0,1 ) of each length M sc
, 6 m N RB
. The sequence group
= mNsc
number u and the number v within the group may vary in time as described in Sections 5.5.1.3 and 5.5.1.4,
RS
RS
− 1) depends on the sequence length M sc .
respectively. The definition of the base sequence ru ,v (0),..., ru ,v ( M sc
3GPP
Release 8
5.5.1.1
22
3GPP TS 36.211 V8.9.0 (2009-12)
Base sequences of length 3N scRB or larger
RS
RS
RB
For M sc
, the base sequence ru ,v (0),..., ru ,v ( M sc
− 1) is given by
3Nsc
RS
RS
ru ,v (n) = xq (n mod N ZC
), 0 n M sc
where the q th root Zadoff-Chu sequence is defined by
xq (m ) = e
−j
qm( m +1)
RS
N ZC
RS
, 0 m N ZC
−1
with q given by
q = q + 1 2 + v (−1) 2q
RS
q = N ZC
(u + 1) 31
RS
RS
RS
The length N ZC
of the Zadoff-Chu sequence is given by the largest prime number such that N ZC
.
M sc
5.5.1.2
Base sequences of length less than 3N scRB
RS
RB
RS
RB
For M sc
and M sc
, base sequence is given by
= Nsc
= 2Nsc
RS
ru ,v (n) = e j ( n) 4 , 0 n M sc
−1
RS
RB
RS
RB
where the value of (n) is given by Table 5.5.1.2-1 and Table 5.5.1.2-2 for M sc
and M sc
,
= Nsc
= 2Nsc
respectively.
3GPP
Release 8
23
3GPP TS 36.211 V8.9.0 (2009-12)
RS
RB
Table 5.5.1.2-1: Definition of (n) for M sc
.
= Nsc
(0),..., (11)
u
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
-1
1
1
-1
-1
1
-1
-3
1
1
-1
3
1
3
-3
3
1
-3
-3
-1
-1
-1
1
1
1
1
1
-3
-1
3
1
1
1
1
3
-3
3
-1
-3
-3
3
1
-3
3
1
-1
3
1
3
3
-3
3
1
1
1
-3
3
-1
3
-3
3
3
-3
1
1
3
-3
-1
3
-1
-1
-1
1
-3
-1
1
1
1
1
1
1
-1
-3
-1
3
3
-3
-3
-3
-3
-3
3
-3
1
-1
-1
-3
-1
1
3
1
-1
1
3
-3
-3
-1
3
1
3
1
1
-3
-3
1
3
-3
-1
3
-1
3
3
-3
1
1
-1
-3
1
-1
3
1
3
-3
-3
-1
-1
1
-3
-3
1
1
-3
-3
-1
3
1
3
-3
-1
-1
3
-1
-1
-1
-1
1
3
-3
-1
-1
-3
3
1
1
3
-1
3
3
1
-1
1
-3
-3
-3
3
3
-3
3
3
-3
3GPP
1
1
-3
-3
-3
1
1
3
-1
-3
-3
-3
1
1
1
1
3
-3
-3
-1
3
-3
-1
1
-1
3
1
1
3
-1
1
-3
-3
-3
-1
-1
-1
-1
1
1
-1
1
1
3
3
1
3
-3
-3
3
1
-3
3
-1
1
1
-1
-1
-3
3
3
-3
1
1
1
-1
3
1
1
1
-3
3
-3
-1
3
3
-1
3
-1
-3
-1
-3
-3
1
-1
-3
-1
1
3
-3
1
1
-3
-3
-1
3
3
-3
3
1
-3
1
-3
-3
3
1
-1
1
-1
-1
1
1
1
3
-3
-1
3
3
3
3
-3
-3
1
3
1
-3
-3
3
-1
1
3
3
-3
3
-1
-1
3
3
1
-3
-3
-1
-3
-1
-3
-1
-1
-3
-1
1
3
3
-1
-1
3
1
1
1
1
1
-1
3
1
3
1
-3
-1
-1
-3
-1
-1
-3
3
1
1
3
-3
-3
-1
-1
Release 8
24
3GPP TS 36.211 V8.9.0 (2009-12)
RS
RB
Table 5.5.1.2-2: Definition of (n) for M sc
.
= 2Nsc
(0),..., (23)
u
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
-1
-3
3
-1
-1
-3
1
-3
-3
1
-1
1
1
3
-3
-1
-1
1
1
1
-1
-3
-3
-1
1
1
-3
-1
-1
1
5.5.1.3
3
3
-1
-3
-1
1
1
3
1
1
1
3
3
-1
-3
-1
-3
3
1
3
-3
-3
-1
-1
-1
-1
-1
-3
-3
1
1
-3
3
1
-1
1
-1
3
3
-3
-3
3
3
-1
3
1
3
-1
1
3
3
1
-3
-1
3
1
1
3
-1
-1
-3
-3
3
1
-3
3
-1
-1
-3
3
-3
-3
1
-1
1
-3
-1
3
1
1
-3
1
3
-1
3
-1
3
3
-1
-1
3
-3
1
3
-3
-1
3
-1
1
3
3
-3
1
-1
3
1
-1
3
1
-1
-3
-1
1
3
-1
3
1
1
1
-3
-1
1
1
-3
-1
1
-3
-3
-1
-1
-1
1
1
-3
1
3
-1
-1
-1
-3
-3
1
-1
3
-3
-1
1
1
-3
-1
1
-3
-3
1
1
3
-3
-1
-3
-3
3
3
-1
-1
-3
-3
-1
-3
3
3
-1
-1
-3
3
3
3
-3
3
-1
3
3
-3
3
1
1
1
3
3
3
-1
-1
1
-1
3
3
1
1
1
-1
-1
-1
1
-1
1
-3
1
-1
-1
-1
-1
-3
3
3
-3
3
-3
-3
1
-3
3
-1
-1
1
3
1
-1
1
-1
-3
3
-3
-1
-3
3
-1
1
-1
-3
1
3
3
-1
3
-1
3
1
1
3
3
-3
-3
-3
-3
1
3
-3
-3
-3
1
3
-1
3
-3
3
-1
-1
-3
-1
-1
-1
1
1
3
-1
-1
-3
-1
1
-1
3
-3
-3
3
-1
1
-1
3
3
1
3
-3
1
3
-3
3
-1
3
-1
-3
1
3
1
1
1
3
1
-1
3
-1
3
-3
-3
-1
1
1
3
1
3
3
-3
3
-3
-3
1
-1
-3
-3
-1
1
3
-3
1
-1
3
-1
1
1
1
-1
3
-1
3
1
3
3
1
3
3
-3
1
1
-1
3
3
3
1
3
3
1
1
3
3
3
1
1
-1
-1
1
-1
-1
-3
3
1
3
3
3
3
-1
1
-1
3
1
-3
-1
-1
1
1
1
-3
-1
1
1
-1
3
-1
-1
1
-1
1
1
-3
-3
-3
3
-1
1
1
1
-3
1
-3
-1
-1
3
-1
-3
-3
-3
1
3
1
-1
1
1
-3
3
1
3
-3
1
1
3
3
-1
-1
-1
-1
1
-1
-1
-1
1
1
-1
1
1
3
-3
-3
1
-1
3
1
-1
1
-1
-1
1
-3
-3
-1
3
3
1
-3
-3
1
3
1
-3
3
-1
3
3
1
3
-3
-1
-3
3
1
-3
-1
3
-1
-3
-3
-1
-3
1
1
-1
-1
1
1
-3
-3
-1
1
-1
-1
-1
1
3
1
-3
1
3
3
-3
3
-3
-3
1
-3
3
-1
1
1
-1
3
-3
-3
-3
-3
-1
1
-3
-3
1
1
3
-3
-3
1
1
-1
-3
1
-3
-3
1
-1
1
-3
-3
1
3
-3
1
3
3
3
1
-1
-1
-3
-1
-3
3
-1
3
1
3
-1
1
1
-1
1
1
3
3
-1
-3
1
-3
-1
-3
-3
1
-1
-1
-3
3
3
-3
1
3
3
-1
3
-3
3
1
-1
-3
-3
-3
-1
-1
-3
1
1
-1
-3
-3
3
-1
-3
-3
1
1
-1
-1
1
-3
1
-1
1
3
-3
-1
3
-1
-3
-3
1
-1
3
-1
-1
1
3
-3
-1
1
-1
-1
1
1
-1
-3
-3
-3
1
-3
-3
-1
1
-3
1
1
-1
3
-1
-1
1
-3
-1
1
-3
-3
3
-1
-1
1
-3
1
-3
1
3
1
-1
3
3
-1
-1
-1
-3
-3
-1
-3
-3
3
3
-1
1
-1
-1
3
Group hopping
The sequence-group number u in slot ns is defined by a group hopping pattern f gh (ns ) and a sequence-shift pattern
f ss according to
(
)
u = f gh (ns ) + f ss mod 30
There are 17 different hopping patterns and 30 different sequence-shift patterns. Sequence-group hopping can be
enabled or disabled by means of the parameter Group-hopping-enabled provided by higher layers. PUCCH and PUSCH
have the same hopping pattern but may have different sequence-shift patterns.
The group-hopping pattern f gh (ns ) is the same for PUSCH and PUCCH and given by
0
fgh (ns ) =
if group hopping is disabled
7
c(8ns
i =0
i
+ i ) 2 mod 30 if group hopping is enabled
where the pseudo-random sequence c(i ) is defined by section 7.2. The pseudo-random sequence generator shall be
N cell
initialized with c init = ID at the beginning of each radio frame.
30
The sequence-shift pattern f ss definition differs between PUCCH and PUSCH.
cell
For PUCCH, the sequence-shift pattern f ssPUCCH is given by f ssPUCCH = N ID
mod 30 .
3GPP
Release 8
25
3GPP TS 36.211 V8.9.0 (2009-12)
(
)
For PUSCH, the sequence-shift pattern f ssPUSCH is given by f ssPUSCH = f ssPUCCH + ss mod 30 , where ss 0,1,..., 29
is configured by higher layers.
5.5.1.4
Sequence hopping
RS
RB
Sequence hopping only applies for reference-signals of length M sc
.
6Nsc
RS
RB
For reference-signals of length M sc
, the base sequence number v within the base sequence group is given by
6Nsc
v=0.
RS
RB
For reference-signals of length M sc
, the base sequence number v within the base sequence group in slot n s
6Nsc
is defined by
c(n ) if group hopping is disabled and sequence hopping is enabled
v= s
otherwise
0
where the pseudo-random sequence c(i ) is given by section 7.2. The parameter Sequence-hopping-enabled provided by
higher layers determines if sequence hopping is enabled or not. The pseudo-random sequence generator shall be
N cell
initialized with cinit = ID 2 5 + f ssPUSCH at the beginning of each radio frame.
30
5.5.2
Demodulation reference signal
5.5.2.1
Demodulation reference signal for PUSCH
5.5.2.1.1
Reference signal sequence
The demodulation reference signal sequence r PUSCH () for PUSCH is defined by
(
)
RS
r PUSCH m M sc
+ n = ru(,v ) (n )
where
m = 0,1
RS
n = 0,..., M sc
−1
and
RS
PUSCH
M sc
= M sc
RS
− 1) .
Section 5.5.1 defines the sequence ru(,v ) (0),..., ru(,v ) ( M sc
The cyclic shift in a slot ns is given as = 2 ncs /12 with
(
)
(1)
( 2)
ncs = nDMRS
+ nDMRS
+ nPRS (ns ) mod 12
where the values of
(1)
is given by Table 5.5.2.1.1-2 according to the parameter cyclicShift provided by higher
nDMRS
( 2)
layers, n DMRS is given by the cyclic shift for DMRS field in most recent DCI format 0 [3] for the transport block
( 2)
associated with the corresponding PUSCH transmission where the values of n DMRS is given in Table 5.5.2.1.1-1.
3GPP
Release 8
26
3GPP TS 36.211 V8.9.0 (2009-12)
( 2)
n DMRS
shall be set to zero, if there is no PDCCH with DCI format 0 for the same transport block, and
•
if the initial PUSCH for the same transport block is semi-persistently scheduled, or ,
•
if the initial PUSCH for the same transport block is scheduled by the random access response grant
n PRS (n s ) is given by
nPRS (n s ) =
7
i =0
UL
c(8N symb
n s + i) 2 i
where the pseudo-random sequence c(i ) is defined by section 7.2. The application of c(i ) is cell-specific. The pseudo-
N cell
cinit = ID 2 5 + f ssPUSCH
30
random sequence generator shall be initialized with
at the beginning of each radio frame.
( 2)
Table 5.5.2.1.1-1: Mapping of Cyclic Shift Field in DCI format 0 to n DMRS Values.
Cyclic Shift Field in
DCI format 0 [3]
( 2)
n DMRS
000
0
001
6
010
3
011
4
100
2
101
8
110
10
111
9
Table 5.5.2.1.1-2: Mapping of cyclicShift to
cyclicShift
(1)
nDMRS
0
0
1
2
2
3
3
4
4
6
5
8
6
9
7
10
3GPP
(1)
Values.
nDMRS
Release 8
27
5.5.2.1.2
3GPP TS 36.211 V8.9.0 (2009-12)
Mapping to physical resources
The sequence r PUSCH () shall be multiplied with the amplitude scaling factor PUSCH and mapped in sequence starting
with r PUSCH (0) to the same set of physical resource blocks used for the corresponding PUSCH transmission defined in
Section 5.3.4. The mapping to resource elements (k , l ) , with l = 3 for normal cyclic prefix and l = 2 for extended
cyclic prefix, in the subframe shall be in increasing order of first k , then the slot number.
5.5.2.2
Demodulation reference signal for PUCCH
5.5.2.2.1
Reference signal sequence
The demodulation reference signal sequence r PUCCH () for PUCCH is defined by
(
)
PUCCH
RS
RS
r PUCCH m' N RS
M sc
+ mM sc
+ n = w (m) z (m)ru(,v ) (n)
where
PUCCH
m = 0,..., N RS
−1
RS
n = 0,..., M sc
−1
m' = 0,1
For PUCCH format 2a and 2b, z (m) equals d (10 ) for m = 1 , where d (10 ) is defined in Section 5.4.2. For all other
cases, z (m) = 1.
RS
The sequence ru(,v ) (n) is given by Section 5.5.1 with M sc
= 12 where the expression for the cyclic shift is
determined by the PUCCH format.
For PUCCH formats 1, 1a and 1b, (ns , l ) is given by
noc (ns )= n(ns ) PUCCH
N
shift
(ns , l )= 2 ncs (ns , l ) N scRB
(
(
(
))
n cell (n , l ) + n(n ) PUCCH + n (n ) mod PUCCH mod N mod N RB
cs s
s
shift
oc s
shift
sc
ncs (ns , l )=
cell
PUCCH
RB
ncs (ns , l ) + n(ns ) shift + noc (ns ) mod N mod N sc
)
for normal cyclic prefix
for extended cyclic prefix
cell
where n(ns ) , N , PUCCH
and ncs
(ns , l ) are defined by Section 5.4.1. The number of reference symbols per slot
shift
PUCCH
and the sequence w (n) are given by Table 5.5.2.2.1-1 and 5.5.2.2.1-2, respectively.
N RS
For PUCCH formats 2, 2a and 2b, (ns , l ) is defined by Section 5.4.2. The number of reference symbols per slot
PUCCH
and the sequence w (n) are given by Table 5.5.2.2.1-1 and 5.5.2.2.1-3, respectively.
N RS
PUCCH
Table 5.5.2.2.1-1: Number of PUCCH demodulation reference symbols per slot N RS
.
PUCCH format
1, 1a, 1b
2
2a, 2b
Normal cyclic prefix
3
2
2
3GPP
Extended cyclic prefix
2
1
N/A
Release 8
28
3GPP TS 36.211 V8.9.0 (2009-12)
PUCCH
Table 5.5.2.2.1-2: Orthogonal sequences w (0) w ( N RS
− 1)
Sequence index noc (ns )
Normal cyclic prefix
1
0
1
1
1
2
1 1
e j 2
3
e j 4
3
e j 4
3
e j 2
3
Extended cyclic prefix
1 1
1
1 1
5.5.2.2.2
− 1
N/A
PUCCH
Table 5.5.2.2.1-3: Orthogonal sequences w (0) w ( N RS
− 1)
Normal cyclic prefix
for PUCCH formats 1, 1a and 1b.
for PUCCH formats 2, 2a, 2b.
Extended cyclic prefix
1
Mapping to physical resources
The sequence r PUCCH () shall be multiplied with the amplitude scaling factor PUCCH and mapped in sequence starting
with r PUCCH (0) to resource elements (k , l ) . The mapping shall be in increasing order of first k , then l and finally the
slot number. The same set of values for k as for the corresponding PUCCH transmission shall be used. The values of
the symbol index l in a slot are given by Table 5.5.2.2.2-1.
Table 5.5.2.2.2-1: Demodulation reference signal location for different PUCCH formats
PUCCH format
1, 1a, 1b
2
2a, 2b
5.5.3
5.5.3.1
Set of values for l
Normal cyclic prefix Extended cyclic prefix
2, 3, 4
2, 3
1, 5
3
1, 5
N/A
Sounding reference signal
Sequence generation
The sounding reference signal sequence r SRS (n ) = ru(,v ) (n ) is defined by Section 5.5.1, where u is the PUCCH
sequence-group number defined in Section 5.5.1.3 and is the base sequence number defined in Section 5.5.1.4. The
cyclic shift of the sounding reference signal is given as
= 2
cs
n SRS
,
8
cs
cs
where n SRS
is configured for each UE by higher layers and n SRS
= 0, 1, 2, 3, 4, 5, 6, 7 .
5.5.3.2
Mapping to physical resources
The sequence shall be multiplied with the amplitude scaling factor SRS in order to conform to the transmit power
PSRS specified in Section 5.1.3.1 in [4], and mapped in sequence starting with r SRS (0) to resource elements (k , l )
according to
RS
r SRS (k ) k = 0,1,..., M sc,
b −1
a2 k +k0 ,l = SRS
0
otherwise
3GPP
Release 8
29
3GPP TS 36.211 V8.9.0 (2009-12)
where k 0 is the frequency-domain starting position of the sounding reference signal and for
RS
is the
b = BSRS M sc,b
length of the sounding reference signal sequence defined as
RS
RB
M sc,
2
b = mSRS, b Nsc
where mSRS, b is given by Table 5.5.3.2-1 through Table 5.5.3.2-4 for each uplink bandwidth
UL
. The cell-specific
N RB
parameter srs-BandwidthConfig CSRS {0,1,2,3,4,5,6,7} and the UE-specific parameter srs-Bandwidth BSRS {0,1,2,3} are
(
)
max
c
UL
given by higher layers. For UpPTS, mSRS,0 shall be reconfigured to mSRS
if
, 0 = max cC mSRS , 0 N RB − 6 N RA
this reconfiguration is enabled by the cell specific parameter srsMaxUpPts given by higher layers, otherwise if the
reconfiguration is disabled
max
mSRS
, 0 = mSRS , 0 ,where c is a SRS BW configuration and CSRS is the set of SRS BW
configurations from the Tables 5.5.3.2-1 to 5.5.3.2-4 for each uplink bandwidth
PRACH in the addressed UpPTS and derived from Table 5.7.1-4.
The frequency-domain starting position
UL
, N RA is the number of format 4
N RB
k0 is defined by
BSRS
RS
k0 = k0 + 2M sc,
b nb
b=0
where for normal uplink subframes
(
)
UL
RB
k 0 = N RB
/ 2 − mSRS, 0 2 N SC
+ k TC , for UpPTS k 0' is defined by:
max
RB
( N UL − mSRS
, 0 ) N sc + kTC
k0' = RB
kTC
(
)
if (n f mod 2) (2 − N SP ) + nhf mod 2 = 0
otherwise
k TC {0,1} is the parameter transmissionComb provided by higher layers for the UE, and nb is frequency position
index. nhf is equal to 0 for UpPTS in first half frame, and equal to 1 for UpPTS in second half frame.
The frequency hopping of the sounding reference signal is configured by the parameter srs-HoppingBandwidth,
bhop {0,1,2,3} , provided by higher layers. If frequency hopping of the sounding reference signal is not enabled (i.e.,
bhop BSRS ), the frequency position index nb remains constant (unless re-configured) and is defined by
nb = 4n RRC mSRS, b mod N b where the parameter freqDomainPosition nRRC is given by higher layers for the UE. If
frequency hopping of the sounding reference signal is enabled (i.e., bhop BSRS ), the frequency position indexes
are defined by
4nRRC mSRS, b mod N b
nb =
Fb (nSRS ) + 4nRRC mSRS, b mod N b
where
b bhop
otherwise
UL
N b is given by Table 5.5.3.2-1 through Table 5.5.3.2-4 for each uplink bandwidth N RB
,
n SRS mod bb '=bhop N b ' n SRS mod bb '=bhop N b '
( N b / 2)
+
if N b even
Fb (n SRS ) =
bb '−=1bhop N b '
2 bb '−=1bhop N b '
b −1
if N b odd
N b / 2 n SRS / b '=bhop N b '
where N b = 1 regardless of the N b value on Table 5.5.3.2-1 through Table 5.5.3.2-4, and
hop
nSRS
n Toffset
2 N SP n f + 2(N SP − 1) s +
,
=
10 Toffset _ max
(n f 10 + ns / 2) / TSRS ,
for 2ms SRS periodicit y of frame structure 2
otherwise
3GPP
nb
Release 8
30
3GPP TS 36.211 V8.9.0 (2009-12)
counts the number of UE-specific SRS transmissions, where TSRS is UE-specific periodicity of SRS transmission
defined in section 8.2 of [4], Toffset is SRS subframe offset defined in Table 8.2-2 of [4] and Toffset_ max is the maximum
value of Toffset for a certain configuration of SRS subframe offset.
For all subframes other than special subframes, the sounding reference signal shall be transmitted in the last symbol of
the subframe.
Table 5.5.3.2-1: mSRS, b and
SRS
bandwidth
configuration
UL
N b , b = 0,1,2,3 , values for the uplink bandwidth of 6 N RB
40 .
SRS-Bandwidth
SRS-Bandwidth
SRS-Bandwidth
SRS-Bandwidth
BSRS = 0
BSRS = 1
BSRS = 2
BSRS = 3
CSRS
mSRS, 0
N0
mSRS, 1
N1
mSRS, 2
N2
mSRS, 3
N3
0
1
2
3
4
5
6
7
36
32
24
20
16
12
8
4
1
1
1
1
1
1
1
1
12
16
4
4
4
4
4
4
3
2
6
5
4
3
2
1
4
8
4
4
4
4
4
4
3
2
1
1
1
1
1
1
4
4
4
4
4
4
4
4
1
2
1
1
1
1
1
1
Table 5.5.3.2-2: mSRS, b and
SRS
bandwidth
configuration
UL
N b , b = 0,1,2,3 , values for the uplink bandwidth of 40 N RB
60 .
SRS-Bandwidth
SRS-Bandwidth
BSRS = 1
BSRS = 0
SRS-Bandwidth
SRS-Bandwidth
BSRS = 2
BSRS = 3
CSRS
mSRS, 0
N0
mSRS, 1
N1
mSRS, 2
N2
mSRS, 3
N3
0
1
2
3
4
5
6
7
48
48
40
36
32
24
20
16
1
1
1
1
1
1
1
1
24
16
20
12
16
4
4
4
2
3
2
3
2
6
5
4
12
8
4
4
8
4
4
4
2
2
5
3
2
1
1
1
4
4
4
4
4
4
4
4
3
2
1
1
2
1
1
1
Table 5.5.3.2-3: mSRS, b and
SRS
bandwidth
configuration
UL
N b , b = 0,1,2,3 , values for the uplink bandwidth of 60 N RB
80 .
SRS-Bandwidth
SRS-Bandwidth
SRS-Bandwidth
SRS-Bandwidth
CSRS
mSRS, 0
N0
mSRS, 1
N1
mSRS, 2
N2
mSRS, 3
N3
0
1
2
3
4
5
6
7
72
64
60
48
48
40
36
32
1
1
1
1
1
1
1
1
24
32
20
24
16
20
12
16
3
2
3
2
3
2
3
2
12
16
4
12
8
4
4
8
2
2
5
2
2
5
3
2
4
4
4
4
4
4
4
4
3
4
1
3
2
1
1
2
BSRS = 0
BSRS = 1
3GPP
BSRS = 2
BSRS = 3
Release 8
31
Table 5.5.3.2-4: mSRS, b and
SRS
bandwidth
configuration
5.5.3.3
3GPP TS 36.211 V8.9.0 (2009-12)
UL
N b , b = 0,1,2,3 , values for the uplink bandwidth of 80 N RB
110 .
SRS-Bandwidth
SRS-Bandwidth
SRS-Bandwidth
SRS-Bandwidth
BSRS = 0
BSRS = 1
BSRS = 2
BSRS = 3
CSRS
mSRS, 0
N0
mSRS, 1
N1
mSRS, 2
N2
mSRS, 3
N3
0
1
2
3
4
5
6
7
96
96
80
72
64
60
48
48
1
1
1
1
1
1
1
1
48
32
40
24
32
20
24
16
2
3
2
3
2
3
2
3
24
16
20
12
16
4
12
8
2
2
2
2
2
5
2
2
4
4
4
4
4
4
4
4
6
4
5
3
4
1
3
2
Sounding reference signal subframe configuration
The cell specific subframe configuration period
TSFC and the cell specific subframe offset SFC for the transmission
of sounding reference signals are listed in Tables 5.5.3.3-1 and 5.5.3.3-2, for FDD and TDD, respectively. Sounding
reference signal subframes are the subframes satisfying ns / 2 mod TSFC SFC . For TDD, sounding reference
signal is transmitted only in configured UL subframes or UpPTS.
Table 5.5.3.3-1: FDD sounding reference signal subframe configuration
srsSubframeConfiguration
Configuration
Period TSFC
Binary
(subframes)
Transmission offset
SFC (subframes)
0
0000
1
{0}
1
0001
2
{0}
2
0010
2
{1}
3
0011
5
{0}
4
0100
5
{1}
5
0101
5
{2}
6
0110
5
{3}
7
0111
5
{0,1}
8
1000
5
{2,3}
9
1001
10
{0}
10
1010
10
{1}
11
1011
10
{2}
12
1100
10
{3}
13
1101
10
{0,1,2,3,4,6,8}
14
1110
10
{0,1,2,3,4,5,6,8}
3GPP
Release 8
32
15
1111
3GPP TS 36.211 V8.9.0 (2009-12)
reserved
reserved
Table 5.5.3.3-2: TDD sounding reference signal subframe configuration
srsSubframeConfiguration
Configuration
Period TSFC
Binary
(subframes)
5.6
Transmission offset
SFC (subframes)
0
0000
5
{1}
1
0001
5
{1, 2}
2
0010
5
{1, 3}
3
0011
5
{1, 4}
4
0100
5
{1, 2, 3}
5
0101
5
{1, 2, 4}
6
0110
5
{1, 3, 4}
7
0111
5
{1, 2, 3, 4}
8
1000
10
{1, 2, 6}
9
1001
10
{1, 3, 6}
10
1010
10
{1, 6, 7}
11
1011
10
{1, 2, 6, 8}
12
1100
10
{1, 3, 6, 9}
13
1101
10
{1, 4, 6, 7}
14
1110
reserved
reserved
15
1111
reserved
reserved
SC-FDMA baseband signal generation
This section applies to all uplink physical signals and physical channels except the physical random access channel.
The time-continuous signal sl (t ) in SC-FDMA symbol l in an uplink slot is defined by
sl (t ) =
UL RB
N sc / 2 −1
N RB
UL RB
k = − N RB
N sc / 2
a k ( − ) ,l e
j 2 (k +1 2 )f (t − N CP,l Ts )
RB
for 0 t (N CP ,l + N ) Ts where k (−) = k + N UL
RB N sc 2 , N = 2048 , f = 15 kHz and a k ,l is the content of resource
element (k, l ) .
The SC-FDMA symbols in a slot shall be transmitted in increasing order of l , starting with l = 0 , where SC-FDMA
symbol l 0 starts at time
l −1
l =0
( N CP,l + N )Ts within the slot.
3GPP
Release 8
33
3GPP TS 36.211 V8.9.0 (2009-12)
Table 5.6-1lists the values of N CP ,l that shall be used. Note that different SC-FDMA symbols within a slot may have
different cyclic prefix lengths.
Table 5.6-1: SC-FDMA parameters.
Configuration
Cyclic prefix length N CP ,l
160 for l = 0
144 for l = 1,2,...,6
512 for l = 0,1,...,5
Normal cyclic prefix
Extended cyclic prefix
5.7
Physical random access channel
5.7.1
Time and frequency structure
The physical layer random access preamble, illustrated in Figure 5.7.1-1, consists of a cyclic prefix of length TCP and a
sequence part of length TSEQ . The parameter values are listed in Table 5.7.1-1 and depend on the frame structure and the
random access configuration. Higher layers control the preamble format.
CP
Sequence
TCP
TSEQ
Figure 5.7.1-1: Random access preamble format.
Table 5.7.1-1: Random access preamble parameters.
Preamble format
TSEQ
TCP
0
3168 Ts
24576 Ts
1
21024 Ts
24576 Ts
2
6240 Ts
2 24576 Ts
3
21024 Ts
2 24576 Ts
4*
448 Ts
4096 Ts
* Frame structure type 2 and special subframe configurations with UpPTS lengths 4384 Ts and 5120 Ts only.
The transmission of a random access preamble, if triggered by the MAC layer, is restricted to certain time and
frequency resources. These resources are enumerated in increasing order of the subframe number within the radio frame
and the physical resource blocks in the frequency domain such that index 0 correspond to the lowest numbered physical
resource block and subframe within the radio frame. PRACH resources within the radio frame are indicated by a
PRACH Resource Index, where the indexing is in the order of appearance in Table 5.7.1-2 and Table 5.7.1-4.
For frame structure type 1 with preamble format 0-3, there is at most one random access resource per subframe. Table
5.7.1-2 lists the preamble formats according to Table 5.7.1-1 and the subframes in which random access preamble
transmission is allowed for a given configuration in frame structure type 1. The parameter prach-ConfigurationIndex is
given by higher layers. The start of the random access preamble shall be aligned with the start of the corresponding
uplink subframe at the UE assuming NTA = 0 , where N TA is defined in section 8.1. For PRACH configuration 0, 1, 2,
15, 16, 17, 18, 31, 32, 33, 34, 47, 48, 49, 50 and 63 the UE may for handover purposes assume an absolute value of the
relative time difference between radio frame i in the current cell and the target cell of less than 153600 Ts . The first
physical resource block
RA
n PRB
allocated to the PRACH opportunity considered for preamble format 0, 1, 2 and 3 is
3GPP
Release 8
defined as
34
3GPP TS 36.211 V8.9.0 (2009-12)
RA
RA
RA
nPRB
= nPRB
offset , where the parameter prach-FrequencyOffset nPRBoffset is expressed as a physical resource
block number configured by higher layers and fulfilling
RA
UL
0 nPRBoffset
N RB
−6.
Table 5.7.1-2: Frame structure type 1 random access configuration for preamble format 0-3.
PRACH
Configuration
Index
0
1
2
3
4
5
6
7
8
9
10
11
12
Preamble
Format
0
0
0
0
0
0
0
0
0
0
0
0
0
System
frame
number
Even
Even
Even
Any
Any
Any
Any
Any
Any
Any
Any
Any
Any
13
0
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
Subframe
number
Preamble
Format
1
4
7
1
4
7
1, 6
2 ,7
3, 8
1, 4, 7
2, 5, 8
3, 6, 9
0, 2, 4, 6, 8
PRACH
Configuration
Index
32
33
34
35
36
37
38
39
40
41
42
43
44
2
2
2
2
2
2
2
2
2
2
2
2
2
System
frame
number
Even
Even
Even
Any
Any
Any
Any
Any
Any
Any
Any
Any
Any
Subframe
number
Any
1, 3, 5, 7, 9
45
2
Any
0
Any
46
N/A
N/A
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
N/A
1
Even
Even
Even
Even
Any
Any
Any
Any
Any
Any
Any
Any
Any
Any
Any
N/A
Even
0, 1, 2, 3, 4,
5, 6, 7, 8, 9
9
1
4
7
1
4
7
1, 6
2 ,7
3, 8
1, 4, 7
2, 5, 8
3, 6, 9
0, 2, 4, 6, 8
1, 3, 5, 7, 9
N/A
9
1
4
7
1
4
7
1, 6
2 ,7
3, 8
1, 4, 7
2, 5, 8
3, 6, 9
0, 2, 4, 6,
8
1, 3, 5, 7,
9
N/A
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
2
3
3
3
3
3
3
3
3
3
3
3
3
N/A
N/A
N/A
3
Even
Even
Even
Even
Any
Any
Any
Any
Any
Any
Any
Any
Any
N/A
N/A
N/A
Even
9
1
4
7
1
4
7
1, 6
2 ,7
3, 8
1, 4, 7
2, 5, 8
3, 6, 9
N/A
N/A
N/A
9
For frame structure type 2 with preamble format 0-4, there might be multiple random access resources in an UL
subframe (or UpPTS for preamble format 4) depending on the UL/DL configuration [see table 4.2-2]. Table 5.7.1-3 lists
PRACH configurations allowed for frame structure type 2 where the configuration index corresponds to a certain
combination of preamble format, PRACH density value, DRA , and version index, rRA . The parameter prachConfigurationIndex is given by higher layers. For frame structure 2 PRACH configuration 0, 1, 2, 20, 21, 22, 30, 31, 32,
40, 41, 42, 48, 49 and 50, the UE may for handover purposes assume an absolute value of the relative time difference
between radio frame i in the current cell and the target cell is less than 153600 Ts .
3GPP
Release 8
35
3GPP TS 36.211 V8.9.0 (2009-12)
Table 5.7.1-3: Frame structure type 2 random access configurations for preamble format 0-4
PRACH
configuration
Index
Preamble
Format
Density
Per 10 ms
Version
(rRA )
PRACH
configuration
Index
Preamble
Format
Density
Per 10 ms
Version
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
2
2
0.5
0.5
0.5
1
1
1
2
2
2
3
3
3
4
4
4
5
5
5
6
6
0.5
0.5
0.5
1
1
2
3
4
5
6
0.5
0.5
0
1
2
0
1
2
0
1
2
0
1
2
0
1
2
0
1
2
0
1
0
1
2
0
1
0
0
0
0
0
0
1
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
N/A
N/A
N/A
N/A
N/A
N/A
0.5
1
1
2
3
4
5
6
0.5
0.5
0.5
1
1
2
3
4
0.5
0.5
0.5
1
1
2
3
4
5
6
N/A
N/A
N/A
N/A
N/A
N/A
2
0
1
0
0
0
0
0
0
1
2
0
1
0
0
0
0
1
2
0
1
0
0
0
0
0
N/A
N/A
N/A
N/A
N/A
N/A
(DRA )
(DRA )
(rRA )
Table 5.7.1-4 lists the mapping to physical resources for the different random access opportunities needed for a certain
0
2
, t 1RA , t RA
) indicates the location of a specific
DRA . Each quadruple of the format ( f RA , t RA
random access resource, where f RA is a frequency resource index within the considered time instance,
0
t RA
= 0,1,2 indicates whether the resource is reoccurring in all radio frames, in even radio frames, or in odd radio
1
frames, respectively, t RA = 0,1 indicates whether the random access resource is located in first half frame or in second
2
half frame, respectively, and where t RA is the uplink subframe number where the preamble starts, counting from 0 at
PRACH density value,
the first uplink subframe between 2 consecutive downlink-to-uplink switch points, with the exception of preamble
2
format 4 where t RA is denoted as (*). The start of the random access preamble formats 0-3 shall be aligned with the
start of the corresponding uplink subframe at the UE assuming NTA = 0 and the random access preamble format 4 shall
start 4832 Ts before the end of the UpPTS at the UE, where the UpPTS is referenced to the UE’s uplink frame timing
assuming NTA = 0 .
The random access opportunities for each PRACH configuration shall be allocated in time first and then in frequency if
and only if time multiplexing is not sufficient to hold all opportunities of a PRACH configuration needed for a certain
density value DRA without overlap in time. For preamble format 0-3, the frequency multiplexing shall be done
according to
3GPP
Release 8
36
RA
nPRB
where
3GPP TS 36.211 V8.9.0 (2009-12)
RA
f
nPRB offset + 6 RA ,
if f RA mod 2 = 0
2
=
f RA
UL
RA
N RB
− 6 − nPRB
offset − 6
, otherwise
2
RA
UL
is the number of uplink resource blocks, n PRB is the first physical resource block allocated to the PRACH
N RB
opportunity considered and where the parameter prach-FrequencyOffset
RA
nPRB
offset is the first physical resource block
available for PRACH expressed as a physical resource block number configured by higher layers and fulfilling
RA
UL
0 nPRBoffset
N RB
−6.
For preamble format 4, the frequency multiplexing shall be done according to
n
RA
PRB
(
)
6 f RA ,
if (n f mod 2) (2 − N SP ) + t 1RA mod 2 = 0
= UL
N RB − 6( f RA + 1), otherwise
where nf is the system frame number and where N SP is the number of DL to UL switch points within the radio frame.
Each random access preamble occupies a bandwidth corresponding to 6 consecutive resource blocks for both frame
structures.
3GPP
Release 8
37
3GPP TS 36.211 V8.9.0 (2009-12)
Table 5.7.1-4: Frame structure type 2 random access preamble mapping in time and frequency.
PRACH
configuration Index
(See Table 5.7.1-3)
0
1
2
3
4
5
6
7
8
9
10
11
12
1
(0,1,0,2)
(0,2,0,2)
(0,1,1,2)
(0,0,0,2)
(0,0,1,2)
(0,0,0,1)
(0,0,0,2)
(0,0,1,2)
(0,0,0,1)
(0,0,1,1)
(0,0,0,0)
(0,0,1,0)
(0,0,0,1)
(0,0,0,2)
(0,0,1,2)
(0,0,0,0)
(0,0,1,0)
(0,0,1,1)
N/A
(0,1,0,1)
(0,2,0,1)
(0,1,1,1)
(0,0,0,1)
(0,0,1,1)
(0,0,0,0)
(0,0,0,1)
(0,0,1,1)
(0,0,0,0)
(0,0,1,0)
N/A
(0,1,0,0)
(0,2,0,0)
(0,1,1,0)
(0,0,0,0)
(0,0,1,0)
N/A
(0,0,0,0)
(0,0,1,0)
N/A
(0,0,0,0)
(0,0,0,1)
(0,0,1,1)
(0,0,0,1)
(0,0,1,0)
(0,0,1,1)
(0,0,0,0)
(0,0,0,1)
(0,0,1,0)
(0,0,0,0)
(0,0,0,1)
(0,0,1,0)
(0,0,1,1)
N/A
(0,0,0,0)
(0,0,1,0)
(1,0,0,0)
(0,0,0,0)
(0,0,1,0)
(1,0,1,0)
N/A
N/A
N/A
(0,0,0,0)
(0,0,0,1)
(0,0,1,0)
(0,0,1,1)
(1,0,0,1)
(0,0,0,0)
(0,0,0,1)
(0,0,1,0)
(0,0,1,1)
(1,0,1,1)
(0,0,0,0)
(0,0,0,1)
(0,0,1,0)
(0,0,1,1)
(1,0,0,0)
(0,0,0,0)
(0,0,0,1)
(0,0,1,0)
(0,0,1,1)
(1,0,0,1)
(1,0,1,1)
(0,0,0,0)
(0,0,0,1)
(0,0,1,0)
(0,0,1,1)
(1,0,0,0)
(1,0,1,0)
(0,1,0,0)
(0,2,0,0)
(0,0,0,0)
(0,0,1,0)
(1,0,0,0)
(1,0,1,0)
(2,0,0,0)
(0,0,0,0)
(0,0,1,0)
(1,0,0,0)
(1,0,1,0)
(2,0,1,0)
N/A
19
(0,0,0,1)
(0,0,0,2)
(0,0,1,1)
(0,0,1,2)
(0,0,0,0)
(0,0,0,2)
(0,0,1,0)
(0,0,1,2)
(0,0,0,0)
(0,0,0,1)
(0,0,1,0)
(0,0,1,1)
(0,0,0,0)
(0,0,0,1)
(0,0,0,2)
(0,0,1,1)
(0,0,1,2)
(0,0,0,1)
(0,0,0,2)
(0,0,1,0)
(0,0,1,1)
(0,0,1,2)
(0,0,0,0)
(0,0,0,1)
(0,0,0,2)
(0,0,1,0)
(0,0,1,2)
(0,0,0,0)
(0,0,0,1)
(0,0,0,2)
(0,0,1,0)
(0,0,1,1)
(0,0,1,2)
N/A
20 / 30
21 / 31
(0,1,0,1)
(0,2,0,1)
13
14
15
16
17
18
UL/DL configuration (See Table 4.2-2)
2
3
4
0
5
6
(0,1,0,1)
(0,2,0,1)
(0,1,0,0)
(0,0,0,1)
(0,0,0,0)
N/A
(0,0,0,0)
(0,0,0,1)
N/A
(0,1,0,0)
(0,2,0,0)
N/A
(0,0,0,0)
N/A
N/A
(0,0,0,0)
(1,0,0,0)
N/A
N/A
N/A
(0,0,0,0)
(0,0,0,1)
(1,0,0,1)
(0,0,0,0)
(0,0,0,1)
(1,0,0,0)
N/A
(0,0,0,0)
(1,0,0,0)
(2,0,0,0)
N/A
(0,0,0,0)
(0,0,0,1)
(1,0,0,0)
(1,0,0,1)
N/A
(0,0,0,0)
(1,0,0,0)
(2,0,0,0)
(3,0,0,0)
N/A
N/A
N/A
(0,0,0,0)
(0,0,0,1)
(1,0,0,0)
(1,0,0,1)
(2,0,0,1)
(0,0,0,0)
(0,0,0,1)
(1,0,0,0)
(1,0,0,1)
(2,0,0,0)
N/A
(0,0,0,0)
(1,0,0,0)
(2,0,0,0)
(3,0,0,0)
(4,0,0,0)
N/A
N/A
N/A
(0,0,0,0)
(0,0,1,0)
(1,0,0,0)
(1,0,1,0)
(2,0,0,0)
(2,0,1,0)
N/A
(0,0,0,0)
(0,0,0,1)
(0,0,0,2)
(1,0,0,2)
(0,0,0,0)
(0,0,0,1)
(0,0,0,2)
(1,0,0,1)
(0,0,0,0)
(0,0,0,1)
(0,0,0,2)
(1,0,0,0)
(0,0,0,0)
(0,0,0,1)
(0,0,0,2)
(1,0,0,1)
(1,0,0,2)
(0,0,0,0)
(0,0,0,1)
(0,0,0,2)
(1,0,0,0)
(1,0,0,2)
(0,0,0,0)
(0,0,0,1)
(0,0,0,2)
(1,0,0,0)
(1,0,0,1)
(0,0,0,0)
(0,0,0,1)
(0,0,0,2)
(1,0,0,0)
(1,0,0,1)
(1,0,0,2)
N/A
(0,1,0,2)
(0,2,0,2)
(0,1,1,1)
(0,0,0,2)
(0,0,1,1)
(0,0,0,1)
(0,0,0,2)
(0,0,1,1)
(0,0,0,1)
(0,0,1,0)
(0,0,0,0)
(0,0,1,1)
(0,0,0,1)
(0,0,0,2)
(0,0,1,1)
(0,0,0,0)
(0,0,0,2)
(0,0,1,0)
(0,0,0,1)
(0,0,1,0)
(0,0,1,1)
(0,0,0,1)
(0,0,0,2)
(0,0,1,0)
(0,0,1,1)
(0,0,0,0)
(0,0,0,1)
(0,0,0,2)
(0,0,1,1)
(0,0,0,0)
(0,0,0,2)
(0,0,1,0)
(0,0,1,1)
(0,0,0,0)
(0,0,0,1)
(0,0,0,2)
(0,0,1,0)
(0,0,1,1)
N/A
(0,0,0,0)
(0,0,0,1)
(1,0,0,0)
(1,0,0,1)
(2,0,0,0)
(2,0,0,1)
N/A
(0,0,0,0)
(1,0,0,0)
(2,0,0,0)
(3,0,0,0)
(4,0,0,0)
(5,0,0,0)
N/A
N/A
N/A
(0,1,0,1)
(0,2,0,1)
(0,1,0,0)
(0,2,0,0)
N/A
N/A
(0,0,0,0)
(0,0,0,1)
(0,0,0,2)
(0,0,1,0)
(0,0,1,1)
(1,0,0,2)
(0,0,0,0)
(0,0,0,1)
(0,0,0,2)
(0,0,1,0)
(0,0,1,1)
(1,0,1,1)
(0,1,0,1)
(0,2,0,1)
N/A
(0,0,0,0)
(0,0,1,0)
(1,0,0,0)
(1,0,1,0)
N/A
3GPP
(0,1,0,2)
(0,2,0,2)
(0,1,0,1)
(0,0,0,2)
(0,0,0,1)
(0,0,0,0)
(0,0,0,1)
(0,0,0,2)
(0,0,0,0)
(0,0,0,2)
(0,0,0,0)
(0,0,0,1)
(0,0,0,0)
(0,0,0,1)
(0,0,0,2)
N/A
N/A
N/A
Release 8
38
22 / 32
23 / 33
24 / 34
25 / 35
26 / 36
27 / 37
28 / 38
29 /39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
(0,1,1,1)
(0,0,0,1)
(0,0,1,1)
(0,0,0,1)
(0,0,1,1)
(0,0,0,1)
(0,0,1,1)
(1,0,0,1)
(0,0,0,1)
(0,0,1,1)
(1,0,0,1)
(1,0,1,1)
(0,0,0,1)
(0,0,1,1)
(1,0,0,1)
(1,0,1,1)
(2,0,0,1)
(0,0,0,1)
(0,0,1,1)
(1,0,0,1)
(1,0,1,1)
(2,0,0,1)
(2,0,1,1)
(0,1,0,0)
(0,2,0,0)
(0,1,1,0)
(0,0,0,0)
(0,0,1,0)
(0,0,0,0)
(0,0,1,0)
(0,0,0,0)
(0,0,1,0)
(1,0,0,0)
(0,0,0,0)
(0,0,1,0)
(1,0,0,0)
(1,0,1,0)
(0,1,0,*)
(0,2,0,*)
(0,1,1,*)
(0,0,0,*)
(0,0,1,*)
(0,0,0,*)
(0,0,1,*)
(0,0,0,*)
(0,0,1,*)
(1,0,0,*)
(0,0,0,*)
(0,0,1,*)
(1,0,0,*)
(1,0,1,*)
(0,0,0,*)
(0,0,1,*)
(1,0,0,*)
(1,0,1,*)
(2,0,0,*)
(0,0,0,*)
(0,0,1,*)
(1,0,0,*)
(1,0,1,*)
(2,0,0,*)
(2,0,1,*)
N/A
N/A
N/A
N/A
N/A
(0,1,1,0)
(0,0,0,0)
(0,0,1,0)
(0,0,0,0)
(0,0,1,0)
(0,0,0,0)
(0,0,1,0)
(1,0,0,0)
(0,0,0,0)
(0,0,1,0)
(1,0,0,0)
(1,0,1,0)
(0,0,0,0)
(0,0,1,0)
(1,0,0,0)
(1,0,1,0)
(2,0,0,0)
(0,0,0,0)
(0,0,1,0)
(1,0,0,0)
(1,0,1,0)
(2,0,0,0)
(2,0,1,0)
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
(0,1,0,*)
(0,2,0,*)
(0,1,1,*)
(0,0,0,*)
(0,0,1,*)
(0,0,0,*)
(0,0,1,*)
(0,0,0,*)
(0,0,1,*)
(1,0,0,*)
(0,0,0,*)
(0,0,1,*)
(1,0,0,*)
(1,0,1,*)
(0,0,0,*)
(0,0,1,*)
(1,0,0,*)
(1,0,1,*)
(2,0,0,*)
(0,0,0,*)
(0,0,1,*)
(1,0,0,*)
(1,0,1,*)
(2,0,0,*)
(2,0,1,*)
N/A
N/A
N/A
N/A
N/A
(0,1,0,*)
(0,2,0,*)
(0,1,1,*)
(0,0,0,*)
(0,0,1,*)
(0,0,0,*)
(0,0,1,*)
(0,0,0,*)
(0,0,1,*)
(1,0,0,*)
(0,0,0,*)
(0,0,1,*)
(1,0,0,*)
(1,0,1,*)
(0,0,0,*)
(0,0,1,*)
(1,0,0,*)
(1,0,1,*)
(2,0,0,*)
(0,0,0,*)
(0,0,1,*)
(1,0,0,*)
(1,0,1,*)
(2,0,0,*)
(2,0,1,*)
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
3GPP
3GPP TS 36.211 V8.9.0 (2009-12)
N/A
(0,0,0,1)
N/A
(0,0,0,1)
(1,0,0,1)
(0,0,0,1)
(1,0,0,1)
(2,0,0,1)
(0,0,0,1)
(1,0,0,1)
(2,0,0,1)
(3,0,0,1)
(0,0,0,1)
(1,0,0,1)
(2,0,0,1)
(3,0,0,1)
(4,0,0,1)
(0,0,0,1)
(1,0,0,1)
(2,0,0,1)
(3,0,0,1)
(4,0,0,1)
(5,0,0,1)
(0,1,0,0)
(0,2,0,0)
N/A
(0,0,0,0)
N/A
(0,0,0,0)
(1,0,0,0)
(0,0,0,0)
(1,0,0,0)
(2,0,0,0)
(0,0,0,0)
(1,0,0,0)
(2,0,0,0)
(3,0,0,0)
(0,1,0,*)
(0,2,0,*)
N/A
(0,0,0,*)
N/A
(0,0,0,*)
(1,0,0,*)
(0,0,0,*)
(1,0,0,*)
(2,0,0,*)
(0,0,0,*)
(1,0,0,*)
(2,0,0,*)
(3,0,0,*)
(0,0,0,*)
(1,0,0,*)
(2,0,0,*)
(3,0,0,*)
(4,0,0,*)
(0,0,0,*)
(1,0,0,*)
(2,0,0,*)
(3,0,0,*)
(4,0,0,*)
(5,0,0,*)
N/A
N/A
N/A
N/A
N/A
N/A
(0,0,0,0)
N/A
(0,0,0,0)
(1,0,0,0)
(0,0,0,0)
(1,0,0,0)
(2,0,0,0)
(0,0,0,0)
(1,0,0,0)
(2,0,0,0)
(3,0,0,0)
(0,0,0,0)
(1,0,0,0)
(2,0,0,0)
(3,0,0,0)
(4,0,0,0)
(0,0,0,0)
(1,0,0,0)
(2,0,0,0)
(3,0,0,0)
(4,0,0,0)
(5,0,0,0)
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
(0,1,0,*)
(0,2,0,*)
N/A
(0,0,0,*)
N/A
(0,0,0,*)
(1,0,0,*)
(0,0,0,*)
(1,0,0,*)
(2,0,0,*)
(0,0,0,*)
(1,0,0,*)
(2,0,0,*)
(3,0,0,*)
(0,0,0,*)
(1,0,0,*)
(2,0,0,*)
(3,0,0,*)
(4,0,0,*)
(0,0,0,*)
(1,0,0,*)
(2,0,0,*)
(3,0,0,*)
(4,0,0,*)
(5,0,0,*)
N/A
N/A
N/A
N/A
N/A
(0,1,0,*)
(0,2,0,*)
N/A
(0,0,0,*)
N/A
(0,0,0,*)
(1,0,0,*)
(0,0,0,*)
(1,0,0,*)
(2,0,0,*)
(0,0,0,*)
(1,0,0,*)
(2,0,0,*)
(3,0,0,*)
(0,0,0,*)
(1,0,0,*)
(2,0,0,*)
(3,0,0,*)
(4,0,0,*)
(0,0,0,*)
(1,0,0,*)
(2,0,0,*)
(3,0,0,*)
(4,0,0,*)
(5,0,0,*)
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
(0,1,1,0)
(0,0,0,1)
(0,0,1,0)
(0,0,0,1)
(0,0,1,0)
(0,0,0,1)
(0,0,1,0)
(1,0,0,1)
(0,0,0,1)
(0,0,1,0)
(1,0,0,1)
(1,0,1,0)
(0,0,0,1)
(0,0,1,0)
(1,0,0,1)
(1,0,1,0)
(2,0,0,1)
(0,0,0,1)
(0,0,1,0)
(1,0,0,1)
(1,0,1,0)
(2,0,0,1)
(2,0,1,0)
(0,1,0,0)
(0,2,0,0)
N/A
(0,0,0,0)
N/A
(0,0,0,0)
(1,0,0,0)
(0,0,0,0)
(1,0,0,0)
(2,0,0,0)
(0,0,0,0)
(1,0,0,0)
(2,0,0,0)
(3,0,0,0)
(0,1,0,*)
(0,2,0,*)
(0,1,1,*)
(0,0,0,*)
(0,0,1,*)
(0,0,0,*)
(0,0,1,*)
(0,0,0,*)
(0,0,1,*)
(1,0,0,*)
(0,0,0,*)
(0,0,1,*)
(1,0,0,*)
(1,0,1,*)
(0,0,0,*)
(0,0,1,*)
(1,0,0,*)
(1,0,1,*)
(2,0,0,*)
(0,0,0,*)
(0,0,1,*)
(1,0,0,*)
(1,0,1,*)
(2,0,0,*)
(2,0,1,*)
N/A
N/A
N/A
N/A
N/A
Release 8
39
63
N/A
N/A
N/A
3GPP TS 36.211 V8.9.0 (2009-12)
N/A
N/A
N/A
N/A
* UpPTS
5.7.2
Preamble sequence generation
The random access preambles are generated from Zadoff-Chu sequences with zero correlation zone, generated from one
or several root Zadoff-Chu sequences. The network configures the set of preamble sequences the UE is allowed to use.
There are 64 preambles available in each cell. The set of 64 preamble sequences in a cell is found by including first, in
the order of increasing cyclic shift, all the available cyclic shifts of a root Zadoff-Chu sequence with the logical index
RACH_ROOT_SEQUENCE, where RACH_ROOT_SEQUENCE is broadcasted as part of the System Information.
Additional preamble sequences, in case 64 preambles cannot be generated from a single root Zadoff-Chu sequence, are
obtained from the root sequences with the consecutive logical indexes until all the 64 sequences are found. The logical
root sequence order is cyclic: the logical index 0 is consecutive to 837. The relation between a logical root sequence
index and physical root sequence index u is given by Tables 5.7.2-4 and 5.7.2-5 for preamble formats 0 – 3 and 4,
respectively.
The u th root Zadoff-Chu sequence is defined by
xu (n ) = e
−j
un( n +1)
N ZC
, 0 n N ZC − 1
where the length N ZC of the Zadoff-Chu sequence is given by Table 5.7.2-1. From the u th root Zadoff-Chu sequence,
random access preambles with zero correlation zones of length N CS − 1 are defined by cyclic shifts according to
xu ,v (n) = xu (( n + Cv ) mod N ZC )
where the cyclic shift is given by
vN CS
Cv = 0
RA
RA
dstart v nshift + (v mod nshift ) N CS
v = 0,1,..., N ZC N CS − 1, N CS 0 for unrestricted sets
N CS = 0
for unrestricted sets
RA RA
RA
for restricted sets
v = 0,1,..., nshift ngroup + nshift − 1
and N CS is given by Tables 5.7.2-2 and 5.7.2-3 for preamble formats 0-3 and 4, respectively. The parameter Highspeed-flag provided by higher layers determines if unrestricted set or restricted set shall be used.
The variable d u is the cyclic shift corresponding to a Doppler shift of magnitude 1 TSEQ and is given by
0 p N ZC 2
p
du =
N ZC − p otherwise
where p is the smallest non-negative integer that fulfils
( pu ) mod N ZC
= 1. The parameters for restricted sets of
cyclic shifts depend on d u . For N CS d u N ZC 3 , the parameters are given by
RA
nshift
= d u N CS
RA
d start = 2d u + nshift
N CS
RA
ngroup
= N ZC d start
(
)
RA
RA
nshift
= max ( N ZC − 2d u − ngroup
d start ) N CS ,0
For N ZC 3 d u ( N ZC − N CS ) 2 , the parameters are given by
3GPP
Release 8
40
3GPP TS 36.211 V8.9.0 (2009-12)
RA
nshift
= ( N ZC − 2d u ) N CS
RA
d start = N ZC − 2d u + nshift
N CS
RA
ngroup
= d u d start
( (
)
RA
RA
RA
nshift
= min max (d u − ngroup
d start ) N CS ,0 , nshift
)
For all other values of d u , there are no cyclic shifts in the restricted set.
Table 5.7.2-1: Random access preamble sequence length.
Preamble
format
0–3
4
N ZC
839
139
Table 5.7.2-2: N CS for preamble generation (preamble formats 0-3).
N CS configuration
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
N CS value
Unrestricted set
0
13
15
18
22
26
32
38
46
59
76
93
119
167
279
419
3GPP
Restricted set
15
18
22
26
32
38
46
55
68
82
100
128
158
202
237
-
Release 8
41
3GPP TS 36.211 V8.9.0 (2009-12)
Table 5.7.2-3: N CS for preamble generation (preamble format 4).
N CS configuration
N CS value
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
2
4
6
8
10
12
15
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
3GPP
Release 8
42
3GPP TS 36.211 V8.9.0 (2009-12)
Table 5.7.2-4: Root Zadoff-Chu sequence order for preamble formats 0 – 3.
Logical root
sequence number
0–23
24–29
30–35
36–41
42–51
52–63
64–75
76–89
90–115
116–135
136–167
168–203
204–263
264–327
328–383
384–455
456–513
514–561
562–629
630–659
660–707
708–729
730–751
752–765
766–777
778–789
790–795
796–803
804–809
810–815
816–819
820–837
Physical root sequence number u
(in increasing order of the corresponding logical sequence number)
129, 710, 140, 699, 120, 719, 210, 629, 168, 671, 84, 755, 105, 734, 93, 746, 70, 769, 60, 779
2, 837, 1, 838
56, 783, 112, 727, 148, 691
80, 759, 42, 797, 40, 799
35, 804, 73, 766, 146, 693
31, 808, 28, 811, 30, 809, 27, 812, 29, 810
24, 815, 48, 791, 68, 771, 74, 765, 178, 661, 136, 703
86, 753, 78, 761, 43, 796, 39, 800, 20, 819, 21, 818
95, 744, 202, 637, 190, 649, 181, 658, 137, 702, 125, 714, 151, 688
217, 622, 128, 711, 142, 697, 122, 717, 203, 636, 118, 721, 110, 729, 89, 750, 103, 736, 61,
778, 55, 784, 15, 824, 14, 825
12, 827, 23, 816, 34, 805, 37, 802, 46, 793, 207, 632, 179, 660, 145, 694, 130, 709, 223, 616
228, 611, 227, 612, 132, 707, 133, 706, 143, 696, 135, 704, 161, 678, 201, 638, 173, 666, 106,
733, 83, 756, 91, 748, 66, 773, 53, 786, 10, 829, 9, 830
7, 832, 8, 831, 16, 823, 47, 792, 64, 775, 57, 782, 104, 735, 101, 738, 108, 731, 208, 631, 184,
655, 197, 642, 191, 648, 121, 718, 141, 698, 149, 690, 216, 623, 218, 621
152, 687, 144, 695, 134, 705, 138, 701, 199, 640, 162, 677, 176, 663, 119, 720, 158, 681, 164,
675, 174, 665, 171, 668, 170, 669, 87, 752, 169, 670, 88, 751, 107, 732, 81, 758, 82, 757, 100,
739, 98, 741, 71, 768, 59, 780, 65, 774, 50, 789, 49, 790, 26, 813, 17, 822, 13, 826, 6, 833
5, 834, 33, 806, 51, 788, 75, 764, 99, 740, 96, 743, 97, 742, 166, 673, 172, 667, 175, 664, 187,
652, 163, 676, 185, 654, 200, 639, 114, 725, 189, 650, 115, 724, 194, 645, 195, 644, 192, 647,
182, 657, 157, 682, 156, 683, 211, 628, 154, 685, 123, 716, 139, 700, 212, 627, 153, 686, 213,
626, 215, 624, 150, 689
225, 614, 224, 615, 221, 618, 220, 619, 127, 712, 147, 692, 124, 715, 193, 646, 205, 634, 206,
633, 116, 723, 160, 679, 186, 653, 167, 672, 79, 760, 85, 754, 77, 762, 92, 747, 58, 781, 62,
777, 69, 770, 54, 785, 36, 803, 32, 807, 25, 814, 18, 821, 11, 828, 4, 835
3, 836, 19, 820, 22, 817, 41, 798, 38, 801, 44, 795, 52, 787, 45, 794, 63, 776, 67, 772, 72
767, 76, 763, 94, 745, 102, 737, 90, 749, 109, 730, 165, 674, 111, 728, 209, 630, 204, 635, 117,
722, 188, 651, 159, 680, 198, 641, 113, 726, 183, 656, 180, 659, 177, 662, 196, 643, 155, 684,
214, 625, 126, 713, 131, 708, 219, 620, 222, 617, 226, 613
230, 609, 232, 607, 262, 577, 252, 587, 418, 421, 416, 423, 413, 426, 411, 428, 376, 463, 395,
444, 283, 556, 285, 554, 379, 460, 390, 449, 363, 476, 384, 455, 388, 451, 386, 453, 361, 478,
387, 452, 360, 479, 310, 529, 354, 485, 328, 511, 315, 524, 337, 502, 349, 490, 335, 504, 324,
515
323, 516, 320, 519, 334, 505, 359, 480, 295, 544, 385, 454, 292, 547, 291, 548, 381, 458, 399,
440, 380, 459, 397, 442, 369, 470, 377, 462, 410, 429, 407, 432, 281, 558, 414, 425, 247, 592,
277, 562, 271, 568, 272, 567, 264, 575, 259, 580
237, 602, 239, 600, 244, 595, 243, 596, 275, 564, 278, 561, 250, 589, 246, 593, 417, 422, 248,
591, 394, 445, 393, 446, 370, 469, 365, 474, 300, 539, 299, 540, 364, 475, 362, 477, 298, 541,
312, 527, 313, 526, 314, 525, 353, 486, 352, 487, 343, 496, 327, 512, 350, 489, 326, 513, 319,
520, 332, 507, 333, 506, 348, 491, 347, 492, 322, 517
330, 509, 338, 501, 341, 498, 340, 499, 342, 497, 301, 538, 366, 473, 401, 438, 371, 468, 408,
431, 375, 464, 249, 590, 269, 570, 238, 601, 234, 605
257, 582, 273, 566, 255, 584, 254, 585, 245, 594, 251, 588, 412, 427, 372, 467, 282, 557, 403,
436, 396, 443, 392, 447, 391, 448, 382, 457, 389, 450, 294, 545, 297, 542, 311, 528, 344, 495,
345, 494, 318, 521, 331, 508, 325, 514, 321, 518
346, 493, 339, 500, 351, 488, 306, 533, 289, 550, 400, 439, 378, 461, 374, 465, 415, 424, 270,
569, 241, 598
231, 608, 260, 579, 268, 571, 276, 563, 409, 430, 398, 441, 290, 549, 304, 535, 308, 531, 358,
481, 316, 523
293, 546, 288, 551, 284, 555, 368, 471, 253, 586, 256, 583, 263, 576
242, 597, 274, 565, 402, 437, 383, 456, 357, 482, 329, 510
317, 522, 307, 532, 286, 553, 287, 552, 266, 573, 261, 578
236, 603, 303, 536, 356, 483
355, 484, 405, 434, 404, 435, 406, 433
235, 604, 267, 572, 302, 537
309, 530, 265, 574, 233, 606
367, 472, 296, 543
336, 503, 305, 534, 373, 466, 280, 559, 279, 560, 419, 420, 240, 599, 258, 581, 229, 610
3GPP
Release 8
43
3GPP TS 36.211 V8.9.0 (2009-12)
Table 5.7.2-5: Root Zadoff-Chu sequence order for preamble format 4.
Logical
root
sequence
number
0 – 19
20 – 39
40 – 59
60 – 79
80 – 99
100 – 119
120 – 137
138 – 837
5.7.3
Physical root sequence number u
(in increasing order of the corresponding logical sequence number)
1
11
21
31
41
51
61
138
128
118
108
98
88
78
2
12
22
32
42
52
62
137
127
117
107
97
87
77
3
13
23
33
43
53
63
136
126
116
106
96
86
76
4
14
24
34
44
54
64
135
125
115
105
95
85
75
5
15
25
35
45
55
65
134
6
124 16
114 26
104 36
94 46
84 56
74 66
N/A
133
123
113
103
93
83
73
7
17
27
37
47
57
67
132
122
112
102
92
82
72
8
18
28
38
48
58
68
131
121
111
101
91
81
71
9
19
29
39
49
59
69
130
120
110
100
90
80
70
10 129
20 119
30 109
40
99
50
89
60
79
-
Baseband signal generation
The time-continuous random access signal s (t ) is defined by
s(t ) = PRACH
N ZC −1 N ZC −1
x
k =0
u , v ( n) e
−j
2nk
N ZC
1
e j 2 (k + + K (k0 + 2 ))f RA (t −T...
Top-quality papers guaranteed
100% original papers
We sell only unique pieces of writing completed according to your demands.
Confidential service
We use security encryption to keep your personal data protected.
Money-back guarantee
We can give your money back if something goes wrong with your order.
Enjoy the free features we offer to everyone
-
Title page
Get a free title page formatted according to the specifics of your particular style.
-
Custom formatting
Request us to use APA, MLA, Harvard, Chicago, or any other style for your essay.
-
Bibliography page
Don’t pay extra for a list of references that perfectly fits your academic needs.
-
24/7 support assistance
Ask us a question anytime you need to—we don’t charge extra for supporting you!
Calculate how much your essay costs
What we are popular for
- English 101
- History
- Business Studies
- Management
- Literature
- Composition
- Psychology
- Philosophy
- Marketing
- Economics