CMPEN 462 PSU Basic OFDM Transmitter Report

3GPP TS 36.211 V8.9.0 (2009-12)Technical Specification
3rd Generation Partnership Project;
Technical Specification Group Radio Access Network;
Evolved Universal Terrestrial Radio Access (E-UTRA);
Physical Channels and Modulation
(Release 8)
The present document has been developed within the 3 rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.
The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners’ Publications Offices.
Release 8
2
3GPP TS 36.211 V8.9.0 (2009-12)
Keywords
UMTS, radio, layer 1
3GPP
Postal address
3GPP support office address
650 Route des Lucioles – Sophia Antipolis
Valbonne – FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16
Internet
http://www.3gpp.org
Copyright Notification
No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.
© 2009, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC).
All rights reserved.
UMTS™ is a Trade Mark of ETSI registered for the benefit of its members
3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
LTE™ is a Trade Mark of ETSI currently being registered for the benefit of its Members and of the 3GPP Organizational Partners
GSM® and the GSM logo are registered and owned by the GSM Association
3GPP
Release 8
3
3GPP TS 36.211 V8.9.0 (2009-12)
Contents
Foreword…………………………………………………………………………………………………………………………………………. 6
1
Scope ……………………………………………………………………………………………………………………………………. 7
2
References ……………………………………………………………………………………………………………………………… 7
3
Definitions, symbols and abbreviations ……………………………………………………………………………………… 7
3.1
3.2
4
4.1
4.2
5
5.1
5.1.1
5.1.2
5.2
5.2.1
5.2.2
5.2.3
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.4
5.4.1
5.4.2
5.4.3
5.5
5.5.1
5.5.1.1
Symbols …………………………………………………………………………………………………………………………………………. 7
Abbreviations………………………………………………………………………………………………………………………………….. 9
Frame structure……………………………………………………………………………………………………………………….. 9
Frame structure type 1 ……………………………………………………………………………………………………………………… 9
Frame structure type 2 ……………………………………………………………………………………………………………………. 10
Uplink………………………………………………………………………………………………………………………………….. 11
Overview ……………………………………………………………………………………………………………………………………… 11
Physical channels ……………………………………………………………………………………………………………………… 11
Physical signals ………………………………………………………………………………………………………………………… 11
Slot structure and physical resources ………………………………………………………………………………………………… 12
Resource grid …………………………………………………………………………………………………………………………… 12
Resource elements …………………………………………………………………………………………………………………….. 13
Resource blocks ……………………………………………………………………………………………………………………….. 13
Physical uplink shared channel ………………………………………………………………………………………………………… 13
Scrambling ………………………………………………………………………………………………………………………………. 14
Modulation ………………………………………………………………………………………………………………………………. 14
Transform precoding …………………………………………………………………………………………………………………. 14
Mapping to physical resources ……………………………………………………………………………………………………. 15
Physical uplink control channel ……………………………………………………………………………………………………….. 16
PUCCH formats 1, 1a and 1b ……………………………………………………………………………………………………… 17
PUCCH formats 2, 2a and 2b ……………………………………………………………………………………………………… 19
Mapping to physical resources ……………………………………………………………………………………………………. 20
Reference signals …………………………………………………………………………………………………………………………… 21
Generation of the reference signal sequence …………………………………………………………………………………. 21
RB
Base sequences of length 3N sc
or larger ……………………………………………………………………………….. 22
RB
5.5.1.2
Base sequences of length less than 3N sc
………………………………………………………………………………. 22
5.5.1.3
Group hopping …………………………………………………………………………………………………………………….. 24
5.5.1.4
Sequence hopping ………………………………………………………………………………………………………………… 25
5.5.2
Demodulation reference signal ……………………………………………………………………………………………………. 25
5.5.2.1
Demodulation reference signal for PUSCH ……………………………………………………………………………… 25
5.5.2.1.1
Reference signal sequence ……………………………………………………………………………………………….. 25
5.5.2.1.2
Mapping to physical resources ………………………………………………………………………………………….. 27
5.5.2.2
Demodulation reference signal for PUCCH …………………………………………………………………………….. 27
5.5.2.2.1
Reference signal sequence ……………………………………………………………………………………………….. 27
5.5.2.2.2
Mapping to physical resources ………………………………………………………………………………………….. 28
5.5.3
Sounding reference signal ………………………………………………………………………………………………………….. 28
5.5.3.1
Sequence generation …………………………………………………………………………………………………………….. 28
5.5.3.2
Mapping to physical resources ………………………………………………………………………………………………. 28
5.5.3.3
Sounding reference signal subframe configuration …………………………………………………………………… 31
5.6
SC-FDMA baseband signal generation……………………………………………………………………………………………… 32
5.7
Physical random access channel ………………………………………………………………………………………………………. 33
5.7.1
Time and frequency structure ……………………………………………………………………………………………………… 33
5.7.2
Preamble sequence generation ……………………………………………………………………………………………………. 39
5.7.3
Baseband signal generation ………………………………………………………………………………………………………… 43
5.8
Modulation and upconversion………………………………………………………………………………………………………….. 43
6
6.1
6.1.1
Downlink ……………………………………………………………………………………………………………………………… 44
Overview ……………………………………………………………………………………………………………………………………… 44
Physical channels ……………………………………………………………………………………………………………………… 44
3GPP
Release 8
6.1.2
6.2
6.2.1
6.2.2
6.2.3
6.2.3.1
6.2.3.2
6.2.4
6.2.5
6.2.6
6.3
6.3.1
6.3.2
6.3.3
6.3.3.1
6.3.3.2
6.3.3.3
6.3.4
6.3.4.1
6.3.4.2
6.3.4.2.1
6.3.4.2.2
6.3.4.2.3
6.3.4.3
6.3.5
6.4
6.5
6.6
6.6.1
6.6.2
6.6.3
6.6.4
6.7
6.7.1
6.7.2
6.7.3
6.7.4
6.8
6.8.1
6.8.2
6.8.3
6.8.4
6.8.5
6.9
6.9.1
6.9.2
6.9.3
6.10
6.10.1
6.10.1.1
6.10.1.2
6.10.2
6.10.2.1
6.10.2.2
6.10.3
6.10.3.1
6.10.3.2
6.11
6.11.1
6.11.1.1
6.11.1.2
6.11.2
4
3GPP TS 36.211 V8.9.0 (2009-12)
Physical signals ………………………………………………………………………………………………………………………… 44
Slot structure and physical resource elements ……………………………………………………………………………………. 45
Resource grid …………………………………………………………………………………………………………………………… 45
Resource elements …………………………………………………………………………………………………………………….. 45
Resource blocks ……………………………………………………………………………………………………………………….. 46
Virtual resource blocks of localized type ………………………………………………………………………………… 47
Virtual resource blocks of distributed type ………………………………………………………………………………. 47
Resource-element groups …………………………………………………………………………………………………………… 48
Guard period for half-duplex FDD operation ………………………………………………………………………………… 49
Guard Period for TDD Operation ………………………………………………………………………………………………… 49
General structure for downlink physical channels ………………………………………………………………………………. 49
Scrambling ………………………………………………………………………………………………………………………………. 50
Modulation ………………………………………………………………………………………………………………………………. 50
Layer mapping …………………………………………………………………………………………………………………………. 50
Layer mapping for transmission on a single antenna port ………………………………………………………….. 50
Layer mapping for spatial multiplexing…………………………………………………………………………………… 51
Layer mapping for transmit diversity ……………………………………………………………………………………… 51
Precoding ………………………………………………………………………………………………………………………………… 52
Precoding for transmission on a single antenna port …………………………………………………………………. 52
Precoding for spatial multiplexing………………………………………………………………………………………….. 52
Precoding without CDD …………………………………………………………………………………………………… 52
Precoding for large delay CDD …………………………………………………………………………………………. 52
Codebook for precoding ………………………………………………………………………………………………….. 53
Precoding for transmit diversity …………………………………………………………………………………………….. 54
Mapping to resource elements …………………………………………………………………………………………………….. 55
Physical downlink shared channel ……………………………………………………………………………………………………. 55
Physical multicast channel ………………………………………………………………………………………………………………. 55
Physical broadcast channel ……………………………………………………………………………………………………………… 56
Scrambling ………………………………………………………………………………………………………………………………. 56
Modulation ………………………………………………………………………………………………………………………………. 56
Layer mapping and precoding …………………………………………………………………………………………………….. 56
Mapping to resource elements …………………………………………………………………………………………………….. 56
Physical control format indicator channel …………………………………………………………………………………………. 57
Scrambling ………………………………………………………………………………………………………………………………. 57
Modulation ………………………………………………………………………………………………………………………………. 57
Layer mapping and precoding …………………………………………………………………………………………………….. 58
Mapping to resource elements …………………………………………………………………………………………………….. 58
Physical downlink control channel …………………………………………………………………………………………………… 58
PDCCH formats ……………………………………………………………………………………………………………………….. 58
PDCCH multiplexing and scrambling ………………………………………………………………………………………….. 59
Modulation ………………………………………………………………………………………………………………………………. 59
Layer mapping and precoding …………………………………………………………………………………………………….. 59
Mapping to resource elements …………………………………………………………………………………………………….. 59
Physical hybrid ARQ indicator channel…………………………………………………………………………………………….. 60
Modulation ………………………………………………………………………………………………………………………………. 61
Resource group alignment, layer mapping and precoding ………………………………………………………………. 62
Mapping to resource elements …………………………………………………………………………………………………….. 63
Reference signals …………………………………………………………………………………………………………………………… 65
Cell-specific reference signals…………………………………………………………………………………………………….. 65
Sequence generation …………………………………………………………………………………………………………….. 65
Mapping to resource elements ……………………………………………………………………………………………….. 66
MBSFN reference signals ………………………………………………………………………………………………………….. 68
Sequence generation …………………………………………………………………………………………………………….. 68
Mapping to resource elements ……………………………………………………………………………………………….. 68
UE-specific reference signals ……………………………………………………………………………………………………… 70
Sequence generation …………………………………………………………………………………………………………….. 70
Mapping to resource elements ……………………………………………………………………………………………….. 71
Synchronization signals ………………………………………………………………………………………………………………….. 72
Primary synchronization signal …………………………………………………………………………………………………… 73
Sequence generation …………………………………………………………………………………………………………….. 73
Mapping to resource elements ……………………………………………………………………………………………….. 73
Secondary synchronization signal ……………………………………………………………………………………………….. 73
3GPP
Release 8
6.11.2.1
6.11.2.2
6.12
6.13
7
7.1
7.1.1
7.1.2
7.1.3
7.1.4
7.2
8
8.1
5
3GPP TS 36.211 V8.9.0 (2009-12)
Sequence generation …………………………………………………………………………………………………………….. 73
Mapping to resource elements ……………………………………………………………………………………………….. 75
OFDM baseband signal generation …………………………………………………………………………………………………… 76
Modulation and upconversion………………………………………………………………………………………………………….. 76
Generic functions ………………………………………………………………………………………………………………….. 77
Modulation mapper ………………………………………………………………………………………………………………………… 77
BPSK …………………………………………………………………………………………………………………………………………… 77
QPSK …………………………………………………………………………………………………………………………………………… 77
16QAM ………………………………………………………………………………………………………………………………………… 78
64QAM ………………………………………………………………………………………………………………………………………… 78
Pseudo-random sequence generation ………………………………………………………………………………………………… 79
Timing …………………………………………………………………………………………………………………………………. 80
Uplink-downlink frame timing ………………………………………………………………………………………………………… 80
Annex A (informative):
Change history ………………………………………………………………………………….. 81
3GPP
Release 8
6
3GPP TS 36.211 V8.9.0 (2009-12)
Foreword
This Technical Specification has been produced by the 3 rd Generation Partnership Project (3GPP).
The contents of the present document are subject to continuing work within the TSG and may change following formal
TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an
identifying change of release date and an increase in version number as follows:
Version x.y.z
where:
x the first digit:
1 presented to TSG for information;
2 presented to TSG for approval;
3 or greater indicates TSG approved document under change control.
y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections,
updates, etc.
z the third digit is incremented when editorial only changes have been incorporated in the document.
3GPP
Release 8
1
7
3GPP TS 36.211 V8.9.0 (2009-12)
Scope
The present document describes the physical channels for evolved UTRA.
2
References
The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.
• References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.
• For a specific reference, subsequent revisions do not apply.
• For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including
a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same
Release as the present document.
[1]
3GPP TR 21.905: “Vocabulary for 3GPP Specifications”.
[2]
3GPP TS 36.201: “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Layer –
General Description”.
[3]
3GPP TS 36.212: “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and
channel coding”.
[4]
3GPP TS 36.213: “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer
procedures”.
[5]
3GPP TS 36.214: “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer –
Measurements”.
[6]
3GPP TS 36.104: “Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS)
radio transmission and reception”.
[7]
3GPP TS 36.101: “Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE)
radio transmission and reception”.
[8]
3GPP TS36.321, “Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access
Control (MAC) protocol specification”
3
Definitions, symbols and abbreviations
3.1
Symbols
For the purposes of the present document, the following symbols apply:
(k , l )
Resource element with frequency-domain index k and time-domain index l
a k( ,pl )
Value of resource element (k , l ) [for antenna port p ]
D
DRA
Matrix for supporting cyclic delay diversity
Density of random access opportunities per radio frame
f0
Carrier frequency
3GPP
Release 8
8
3GPP TS 36.211 V8.9.0 (2009-12)
f RA
PRACH resource frequency index within the considered time domain location
PUSCH
M sc
PUSCH
M RB
(q)
M bit
( q)
M symb
Scheduled bandwidth for uplink transmission, expressed as a number of subcarriers
layer
M symb
Number of modulation symbols to transmit per layer for a physical channel
ap
M symb
Number of modulation symbols to transmit per antenna port for a physical channel
N
N CP ,l
A constant equal to 2048 for f = 15 kHz and 4096 for f = 7.5 kHz
Downlink cyclic prefix length for OFDM symbol l in a slot
N cs(1)
Number of cyclic shifts used for PUCCH formats 1/1a/1b in a resource block with a mix of
formats 1/1a/1b and 2/2a/2b
RB
Bandwidth available for use by PUCCH formats 2/2a/2b, expressed in multiples of Nsc
(2)
N RB
HO
N RB
Scheduled bandwidth for uplink transmission, expressed as a number of resource blocks
Number of coded bits to transmit on a physical channel [for code word q ]
Number of modulation symbols to transmit on a physical channel [for code word q ]
cell
N ID
The offset used for PUSCH frequency hopping, expressed in number of resource blocks (set by
higher layers)
Physical layer cell identity
MBSFN
N ID
MBSFN area identity
DL
N RB
min, DL
N RB
max, DL
N RB
UL
N RB
min, UL
N RB
max, UL
N RB
DL
N symb
RB
Downlink bandwidth configuration, expressed in multiples of Nsc
UL
N symb
Number of SC-FDMA symbols in an uplink slot
RB
Nsc
Resource block size in the frequency domain, expressed as a number of subcarriers
N SP
Number of downlink to uplink switch points within the radio frame
PUCCH
N RS
Number of reference symbols per slot for PUCCH
N TA
N TA offset
Timing offset between uplink and downlink radio frames at the UE, expressed in units of Ts
(1)
nPUCCH
( 2)
nPUCCH
Resource index for PUCCH formats 1/1a/1b
nPDCCH
nPRB
Number of PDCCHs present in a subframe
n
n
RA
PRB
RA
PRB offset
RB
Smallest downlink bandwidth configuration, expressed in multiples of Nsc
RB
Largest downlink bandwidth configuration, expressed in multiples of Nsc
RB
Uplink bandwidth configuration, expressed in multiples of Nsc
RB
Smallest uplink bandwidth configuration, expressed in multiples of Nsc
RB
Largest uplink bandwidth configuration, expressed in multiples of Nsc
Number of OFDM symbols in a downlink slot
Fixed timing advance offset, expressed in units of Ts
Resource index for PUCCH formats 2/2a/2b
Physical resource block number
First physical resource block occupied by PRACH resource considered
First physical resource block available for PRACH
nVRB
nRNTI
nf
ns
P
p
q
Virtual resource block number
rRA
Index for PRACH versions with same preamble format and PRACH density
Radio network temporary identifier
System frame number
Slot number within a radio frame
Number of cell-specific antenna ports
Antenna port number
Code word number
3GPP
Release 8
9
3GPP TS 36.211 V8.9.0 (2009-12)
Qm
sl( p ) (t )
Modulation order: 2 for QPSK, 4 for 16QAM and 6 for 64QAM transmissions
Time-continuous baseband signal for antenna port p and OFDM symbol l in a slot
0
t RA
t 1RA
2
t RA
Radio frame indicator index of PRACH opportunity
Tf
Ts
Tslot
W
Radio frame duration
 PRACH
 PUCCH
 PUSCH
 SRS
f
f RA

3.2
Half frame index of PRACH opportunity within the radio frame
Uplink subframe number for start of PRACH opportunity within the half frame
Basic time unit
Slot duration
Precoding matrix for downlink spatial multiplexing
Amplitude scaling for PRACH
Amplitude scaling for PUCCH
Amplitude scaling for PUSCH
Amplitude scaling for sounding reference symbols
Subcarrier spacing
Subcarrier spacing for the random access preamble
Number of transmission layers
Abbreviations
For the purposes of the present document, the following abbreviations apply:
CCE
CDD
PBCH
PCFICH
PDCCH
PDSCH
PHICH
PMCH
PRACH
PUCCH
PUSCH
4
Control Channel Element
Cyclic Delay Diversity
Physical broadcast channel
Physical control format indicator channel
Physical downlink control channel
Physical downlink shared channel
Physical hybrid-ARQ indicator channel
Physical multicast channel
Physical random access channel
Physical uplink control channel
Physical uplink shared channel
Frame structure
Throughout this specification, unless otherwise noted, the size of various fields in the time domain is expressed as a
number of time units Ts = 1 (15000  2048 ) seconds.
Downlink and uplink transmissions are organized into radio frames with Tf = 307200  Ts = 10 ms duration. Two radio
frame structures are supported:

Type 1, applicable to FDD,

Type 2, applicable to TDD.
4.1
Frame structure type 1
Frame structure type 1 is applicable to both full duplex and half duplex FDD. Each radio frame is
Tf = 307200  Ts = 10 ms long and consists of 20 slots of length Tslot = 15360  Ts = 0.5 ms , numbered from 0 to 19. A
subframe is defined as two consecutive slots where subframe i consists of slots 2i and 2i + 1 .
3GPP
Release 8
10
3GPP TS 36.211 V8.9.0 (2009-12)
For FDD, 10 subframes are available for downlink transmission and 10 subframes are available for uplink transmissions
in each 10 ms interval. Uplink and downlink transmissions are separated in the frequency domain. In half-duplex FDD
operation, the UE cannot transmit and receive at the same time while there are no such restrictions in full-duplex FDD.
One radio frame, Tf = 307200Ts = 10 ms
One slot, Tslot = 15360Ts = 0.5 ms
#0
#1
#2
#3
#18
#19
One subframe
Figure 4.1-1: Frame structure type 1.
4.2
Frame structure type 2
Frame structure type 2 is applicable to TDD. Each radio frame of length Tf = 307200  Ts = 10 ms consists of two halfframes of length 153600 Ts = 5 ms each. Each half-frame consists of five subframes of length 30720 Ts = 1 ms . The
supported uplink-downlink configurations are listed in Table 4.2-2 where, for each subframe in a radio frame, “D”
denotes the subframe is reserved for downlink transmissions, “U” denotes the subframe is reserved for uplink
transmissions and “S” denotes a special subframe with the three fields DwPTS, GP and UpPTS. The length of DwPTS
and UpPTS is given by Table 4.2-1 subject to the total length of DwPTS, GP and UpPTS being equal
to 30720 Ts = 1 ms . Each subframe i is defined as two slots, 2i and 2i + 1 of length Tslot = 15360  Ts = 0.5 ms in each
subframe.
Uplink-downlink configurations with both 5 ms and 10 ms downlink-to-uplink switch-point periodicity are supported.
In case of 5 ms downlink-to-uplink switch-point periodicity, the special subframe exists in both half-frames.
In case of 10 ms downlink-to-uplink switch-point periodicity, the special subframe exists in the first half-frame only.
Subframes 0 and 5 and DwPTS are always reserved for downlink transmission. UpPTS and the subframe immediately
following the special subframe are always reserved for uplink transmission.
One radio frame, Tf = 307200Ts = 10 ms
One half-frame, 153600Ts = 5 ms
One slot,
30720Ts
Tslot=15360Ts
Subframe #0
Subframe #2
Subframe #3
Subframe #4
Subframe #5
Subframe #7
One
subframe,
30720Ts
DwPTS
GP
UpPT
S
DwPTS
GP
Subframe #8
UpPT
S
Figure 4.2-1: Frame structure type 2 (for 5 ms switch-point periodicity).
3GPP
Subframe #9
Release 8
11
3GPP TS 36.211 V8.9.0 (2009-12)
Table 4.2-1: Configuration of special subframe (lengths of DwPTS/GP/UpPTS).
Special subframe
configuration
Normal cyclic prefix in downlink
DwPTS
UpPTS
Normal
Extended
cyclic prefix
cyclic prefix
in uplink
in uplink
Extended cyclic prefix in downlink
DwPTS
UpPTS
Normal cyclic
Extended cyclic
prefix in uplink
prefix in uplink
0
6592  Ts
7680  Ts
1
19760  Ts
20480  Ts
2
21952  Ts
3
24144  Ts
25600  Ts
4
26336  Ts
7680  Ts
5
6592  Ts
20480  Ts
6
19760  Ts
7
21952  Ts
8
24144  Ts
2192  Ts
4384  Ts
23040  Ts
2560  Ts
2192  Ts
2560  Ts
4384  Ts
5120  Ts
23040  Ts
5120  Ts






Table 4.2-2: Uplink-downlink configurations.
Uplink-downlink
configuration
0
1
2
3
4
5
6
5
Uplink
5.1
Overview
Downlink-to-Uplink
Switch-point periodicity
5 ms
5 ms
5 ms
10 ms
10 ms
10 ms
5 ms
0
D
D
D
D
D
D
D
1
S
S
S
S
S
S
S
2
U
U
U
U
U
U
U
Subframe number
3 4 5 6 7
U U D S U
U D D S U
D D D S U
U U D D D
U D D D D
D D D D D
U U D S U
8
U
U
D
D
D
D
U
9
U
D
D
D
D
D
D
The smallest resource unit for uplink transmissions is denoted a resource element and is defined in section 5.2.2.
5.1.1
Physical channels
An uplink physical channel corresponds to a set of resource elements carrying information originating from higher
layers and is the interface defined between 36.212 and 36.211. The following uplink physical channels are defined:

Physical Uplink Shared Channel, PUSCH

Physical Uplink Control Channel, PUCCH

Physical Random Access Channel, PRACH
5.1.2
Physical signals
An uplink physical signal is used by the physical layer but does not carry information originating from higher layers.
The following uplink physical signals are defined:

Reference signal
3GPP
Release 8
12
3GPP TS 36.211 V8.9.0 (2009-12)
5.2
Slot structure and physical resources
5.2.1
Resource grid
UL
UL RB
The transmitted signal in each slot is described by a resource grid of N RB
SC-FDMA
N sc subcarriers and N symb
UL
symbols. The resource grid is illustrated in Figure 5.2.1-1. The quantity N RB
depends on the uplink transmission
bandwidth configured in the cell and shall fulfil
min, UL
UL
max, UL
N RB
 N RB
 N RB
max, UL
min, UL
where N RB
= 110 is the smallest and largest uplink bandwidth, respectively, supported by the
= 6 and N RB
UL
current version of this specification. The set of allowed values for N RB
is given by [7].
The number of SC-FDMA symbols in a slot depends on the cyclic prefix length configured by higher layers and is
given in Table 5.2.3-1.
One uplink slot Tslot
UL
N symb
SC-FDMA symbols
UL RB
k = N RB
N sc − 1
Resource
element
N scRB
UL
 N scRB
N RB
subcarrier
s
subcarrier
s
Resource
block
resource
UL
N symb
 N scRB
elements
k =0
l=0
l=
UL
N symb
−1
Figure 5.2.1-1: Uplink resource grid.
3GPP
(k , l )
Release 8
5.2.2
13
3GPP TS 36.211 V8.9.0 (2009-12)
Resource elements
Each element in the resource grid is called a resource element and is uniquely defined by the index pair (k, l ) in a slot
UL
UL RB
− 1 are the indices in the frequency and time domain, respectively.
where k = 0,…,N RB
Nsc −1 and l = 0,…, N symb
Resource element (k, l ) corresponds to the complex value a k ,l . Quantities a k ,l corresponding to resource elements not
used for transmission of a physical channel or a physical signal in a slot shall be set to zero.
5.2.3
Resource blocks
UL
A physical resource block is defined as N symb
consecutive SC-FDMA symbols in the time domain and
UL
RB
RB
consecutive subcarriers in the frequency domain, where N symb
and N sc
are given by Table 5.2.3-1. A physical
N sc
UL
RB
 N sc
resource block in the uplink thus consists of N symb
resource elements, corresponding to one slot in the time
domain and 180 kHz in the frequency domain.
Table 5.2.3-1: Resource block parameters.
Configuration
RB
Nsc
UL
N symb
12
12
7
6
Normal cyclic prefix
Extended cyclic prefix
The relation between the physical resource block number nPRB in the frequency domain and resource elements (k , l ) in
a slot is given by
 k 
nPRB =  RB 
 N sc 
5.3
Physical uplink shared channel
The baseband signal representing the physical uplink shared channel is defined in terms of the following steps:

scrambling

modulation of scrambled bits to generate complex-valued symbols

transform precoding to generate complex-valued symbols

mapping of complex-valued symbols to resource elements

generation of complex-valued time-domain SC-FDMA signal for each antenna port
Scrambling
Modulation
mapper
Transform
precoder
Resource
element mapper
Figure 5.3-1: Overview of uplink physical channel processing.
3GPP
SC-FDMA
signal gen.
Release 8
5.3.1
14
3GPP TS 36.211 V8.9.0 (2009-12)
Scrambling
The block of bits b(0),…, b(M bit − 1) , where M bit is the number of bits transmitted on the physical uplink shared
channel in one subframe, shall be scrambled with a UE-specific scrambling sequence prior to modulation, resulting in a
~
~
block of scrambled bits b (0),…,b (M bit − 1) according to the following pseudo code
Set i = 0
while i < Mbit if b(i) = x // ACK/NAK or Rank Indication placeholder bits ~ b (i) = 1 else if b(i ) = y // ACK/NAK or Rank Indication repetition placeholder bits ~ ~ b (i) = b (i − 1) Else // Data or channel quality coded bits, Rank Indication coded bits or ACK/NAK coded bits ~ b (i) = (b(i) + c(i)) mod 2 end if end if i=i+1 end while where x and y are tags defined in [3] section 5.2.2.6 and where the scrambling sequence c(i ) is given by Section 7.2. cell The scrambling sequence generator shall be initialised with cinit = nRNTI  214 + ns 2  29 + N ID at the start of each subframe where 5.3.2 nRNTI corresponds to the RNTI associated with the PUSCH transmission as described in Section 8[4]. Modulation ~ ~ The block of scrambled bits b (0),...,b (M bit − 1) shall be modulated as described in Section 7.1, resulting in a block of complex-valued symbols d (0),...,d (M symb − 1) . Table 5.3.2-1 specifies the modulation mappings applicable for the physical uplink shared channel. Table 5.3.2-1: Uplink modulation schemes Physical channel PUSCH 5.3.3 Modulation schemes QPSK, 16QAM, 64QAM Transform precoding PUSCH The block of complex-valued symbols d (0),...,d (M symb − 1) is divided into M symb M sc sets, each corresponding to one SC-FDMA symbol. Transform precoding shall be applied according to 3GPP Release 8 15 PUSCH z (l  M sc + k) = 3GPP TS 36.211 V8.9.0 (2009-12) PUSCH M sc −1 1  PUSCH M sc PUSCH d (l  M sc + i )e −j 2ik PUSCH M sc i =0 PUSCH k = 0,..., M sc −1 PUSCH l = 0,..., M symb M sc −1 PUSCH PUSCH RB resulting in a block of complex-valued symbols z(0),...,z(M symb − 1) . The variable M sc , where = M RB  Nsc PUSCH represents the bandwidth of the PUSCH in terms of resource blocks, and shall fulfil M RB PUSCH UL M RB = 2 2  3 3  5 5  N RB where  2 , 3 , 5 is a set of non-negative integers. 5.3.4 Mapping to physical resources The block of complex-valued symbols z(0),...,z(M symb − 1) shall be multiplied with the amplitude scaling factor  PUSCH in order to conform to the transmit power PPUSCH specified in Section 5.1.1.1 in [4], and mapped in sequence starting with z (0) to physical resource blocks assigned for transmission of PUSCH. The mapping to resource elements (k, l ) corresponding to the physical resource blocks assigned for transmission and not used for transmission of reference signals and not reserved for possible SRS transmission shall be in increasing order of first the index k , then the index l , starting with the first slot in the subframe. If uplink frequency-hopping is disabled, the set of physical resource blocks to be used for transmission are given by nPRB = nVRB where nVRB is obtained from the uplink scheduling grant as described in Section 8.1 in [4]. If uplink frequency-hopping with type 1 PUSCH hopping is enabled, the set of physical resource blocks to be used for transmission are given by Section 8.4.1 in [4]. If uplink frequency-hopping with predefined hopping pattern is enabled, the set of physical resource blocks to be used for transmission in slot ns is given by the scheduling grant together with a predefined pattern according to ( (( ) ( )) ) sb sb sb sb n~PRB (ns ) = n~VRB + f hop (i )  N RB + N RB − 1 − 2 n~VRB mod N RB  f m (i ) mod( N RB  N sb ) n 2 inter − subframe hopping i= s intra and inter − subframe hopping  ns ~ nPRB (ns ) N sb = 1  nPRB (ns ) = ~ HO N sb  1 nPRB (ns ) + N RB 2 nVRB N sb = 1  n~VRB =  HO N sb  1 nVRB − N RB 2     where nVRB is obtained from the scheduling grant as described in Section 8.1 in [4]. The parameter puschHO sb HoppingOffset, N RB , is provided by higher layers.. The size N RB of each sub-band is given by,  sb N RB =  ( UL N RB UL N RB − HO N RB − HO N RB ) mod 2 N sb  N sb = 1 N sb  1 where the number of sub-bands N sb is given by higher layers. The function f m (i)  0,1 determines whether mirroring is used or not. The parameter Hopping-mode provided by higher layers determines if hopping is “inter-subframe” or “intra and inter-subframe”. 3GPP Release 8 16 The hopping function f hop (i) and the function 3GPP TS 36.211 V8.9.0 (2009-12) f m (i) are given by 0 N sb = 1  i10+9  k −( i10+1) ) mod N sb N sb = 2 ( f hop (i − 1) +  c(k )  2 f hop (i ) =  k =i10+1   i10+9  ( f hop (i − 1) +   c(k )  2 k −( i10+1)  mod( N sb − 1) + 1) mod N sb   k =i10+1  N sb  2 N sb = 1 and intra and inter − subframe hopping i mod 2  f m (i ) = CURRENT _ TX _ NB mod 2 N sb = 1 and inter − subframe hopping  c(i  10 ) N sb  1  where f hop (−1) =0 and the pseudo-random sequence c(i) is given by section 7.2 and CURRENT_TX_NB indicates the transmission number for the transport block transmitted in slot ns as defined in [8]. The pseudo-random sequence generator shall be initialised with cell 9 cell cinit = N ID for FDD and cinit = 2  (n f mod 4) + NID for TDD at the start of each frame. 5.4 Physical uplink control channel The physical uplink control channel, PUCCH, carries uplink control information. The PUCCH is never transmitted simultaneously with the PUSCH from the same UE. For frame structure type 2, the PUCCH is not transmitted in the UpPTS field. The physical uplink control channel supports multiple formats as shown in Table 5.4-1. Formats 2a and 2b are supported for normal cyclic prefix only. Table 5.4-1: Supported PUCCH formats. PUCCH format 1 1a 1b 2 2a 2b Modulation scheme N/A BPSK QPSK QPSK QPSK+BPSK QPSK+QPSK Number of bits per subframe, M bit N/A 1 2 20 21 22 cell All PUCCH formats use a cyclic shift of a sequence in each symbol, where ncs (ns , l ) is used to derive the cyclic shift cell for the different PUCCH formats. The quantity ncs (ns , l ) varies with the symbol number l and the slot number ns according to cell ncs (ns , l ) =  7 UL c(8Nsymb  ns i =0 + 8l + i)  2i where the pseudo-random sequence c(i ) is defined by section 7.2. The pseudo-random sequence generator shall be initialized with cinit = N ID at the beginning of each radio frame. cell (2) (1) The physical resources used for PUCCH depends on two parameters, N RB and N cs , given by higher layers. The (2) variable N RB  0 denotes the bandwidth in terms of resource blocks that are available for use by PUCCH formats 2/2a/2b transmission in each slot. The variable N cs(1) denotes the number of cyclic shift used for PUCCH formats 1/1a/1b in a resource block used for a mix of formats 1/1a/1b and 2/2a/2b. The value of N cs(1) is an integer multiple of within the range of {0, 1, …, 7}, where PUCCH is provided by higher layers. No mixed resource block is PUCCH shift shift 3GPP Release 8 17 3GPP TS 36.211 V8.9.0 (2009-12) (1) present if N cs = 0 . At most one resource block in each slot supports a mix of formats 1/1a/1b and 2/2a/2b. Resources (1) used for transmission of PUCCH format 1/1a/1b and 2/2a/2b are represented by the non-negative indices nPUCCH and  N (1)  (2) (2) RB RB n PUCCH  N RB N sc +  cs   ( N sc − N cs(1) − 2) , respectively.  8  5.4.1 PUCCH formats 1, 1a and 1b For PUCCH format 1, information is carried by the presence/absence of transmission of PUCCH from the UE. In the remainder of this section, d (0) = 1 shall be assumed for PUCCH format 1. For PUCCH formats 1a and 1b, one or two explicit bits are transmitted, respectively. The block of bits b(0),..., b(M bit − 1) shall be modulated as described in Table 5.4.1-1, resulting in a complex-valued symbol d (0) . The modulation schemes for the different PUCCH formats are given by Table 5.4-1. PUCCH = 12 sequence ru(,v ) (n) The complex-valued symbol d (0) shall be multiplied with a cyclically shifted length N seq according to y (n) = d (0)  ru(,v ) (n), PUCCH n = 0,1,..., N seq −1 RS PUCCH = N seq where ru(,v ) (n) is defined by section 5.5.1 with M sc . The cyclic shift  varies between symbols and slots as defined below. PUCCH − 1) shall be scrambled by S (ns ) and block-wise spread with The block of complex-valued symbols y (0),..., y ( N seq the orthogonal sequence wnoc (i) according to ( ) PUCCH PUCCH PUCCH z m' N SF  N seq + m  N seq + n = S (n s )  wnoc (m)  y (n ) where PUCCH m = 0,..., N SF −1 PUCCH n = 0,..., N seq −1 m' = 0,1 and 1 S ( n s ) =  j e 2 if n' (n S ) mod 2 = 0 otherwise PUCCH PUCCH with NSF = 4 for both slots of normal PUCCH formats 1/1a/1b, and NSF = 4 for the first slot and PUCCH N SF = 3 for the second slot of shortened PUCCH formats 1/1a/1b. The sequence wnoc (i) is given by Table 5.4.1-2 and Table 5.4.1-3 and n' (ns ) is defined below. (1) Resources used for transmission of PUCCH format 1, 1a and 1b are identified by a resource index nPUCCH from which the orthogonal sequence index noc (ns ) and the cyclic shift  (ns , l ) are determined according to 3GPP Release 8 18    n(n )  PUCCH N   s shift noc (ns )=  N 2  n(ns )  PUCCH shift  3GPP TS 36.211 V8.9.0 (2009-12) for normal cyclic prefix  for extended cyclic prefix  (ns , l )= 2  ncs (ns , l ) N scRB   ( ( (  ))  n cell (n , l ) + n(n )  PUCCH + n (n ) mod PUCCH mod N  mod N RB  cs s s shift oc s shift sc ncs (ns , l )=  cell PUCCH RB  ncs (ns , l ) + n(ns )   shift + noc (ns ) 2 mod N  mod N sc  ) for normal cyclic prefix for extended cyclic prefix where (1)  N (1) if nPUCCH  c  N cs(1) PUCCH shift N  =  csRB  N sc otherwise 3 normal cyclic prefix c= 2 extended cyclic prefix The resource indices within the two resource blocks in the two slots of a subframe to which the PUCCH is mapped are given by (1)  n n(ns ) =  PUCCH (1) (1) PUCCH RB PUCCH   nPUCCH − c  N cs  shift mod c  N sc  shift ( ) ( ) (1) if nPUCCH  c  N cs(1) PUCCH shift otherwise for ns mod 2 = 0 and by ( ) (1) c(n(ns − 1) + 1) mod cN scRB PUCCH + 1 − 1 nPUCCH  c  N cs(1) PUCCH shift shift n(ns ) =  PUCCH ( ) h / c + h mod c N ' /  otherwise  shift  ( ) for ns mod 2 = 1 , where h = (n' (ns − 1) + d ) mod cN ' / PUCCH , with shift d = 2 for normal CP and d = 0 for extended CP. The parameter deltaPUCCH-Shift PUCCH is provided by higher layers. shift Table 5.4.1-1: Modulation symbol d (0) for PUCCH formats 1a and 1b. PUCCH format b(0),..., b(M bit − 1) 0 1 00 01 1a 1b 10 11 3GPP d (0) 1 −1 1 −j j −1 Release 8 19 3GPP TS 36.211 V8.9.0 (2009-12)   PUCCH − 1) Table 5.4.1-2: Orthogonal sequences w(0)  w( N SF  PUCCH − 1) Orthogonal sequences w(0)  w( N SF Sequence index noc (ns ) + 1 + 1 + 1 0 1 2 − 1 + 1 − 1 − 1 − 1 + 1    PUCCH for N SF = 3. PUCCH − 1) Orthogonal sequences w(0)  w( N SF Sequence index noc (ns ) 1 0  + 1 + 1 + 1 PUCCH − 1) Table 5.4.1-3: Orthogonal sequences w(0)  w( N SF 5.4.2 PUCCH for NSF = 4.  1 1 1 1 e j 2 3 e j 4 3  2 1 e j 4 3 e j 2 3  PUCCH formats 2, 2a and 2b The block of bits b(0),..., b(19) shall be scrambled with a UE-specific scrambling sequence, resulting in a block of ~ ~ scrambled bits b (0),..., b (19) according to ~ b (i) = (b(i) + c(i))mod 2 where the scrambling sequence c(i ) is given by Section 7.2. The scrambling sequence generator shall be initialised with ( ) cell cinit = (ns 2 + 1)  2 N ID + 1  216 + nRNTI at the start of each subframe where nRNTI is C-RNTI. ~ ~ The block of scrambled bits b (0),...,b (19) shall be QPSK modulated as described in Section 7.1, resulting in a block of complex-valued modulation symbols d (0),..., d (9) . PUCCH = 12 sequence Each complex-valued symbol d (0),..., d (9) shall be multiplied with a cyclically shifted length N seq ru(,v ) (n) according to PUCCH z ( N seq  n + i ) = d (n)  ru(,v ) (i ) n = 0,1,..., 9 RB i = 0,1,..., N sc −1 RS PUCCH = N seq where ru(,v ) (i ) is defined by section 5.5.1 with M sc . (2) Resources used for transmission of PUCCH formats 2/2a/2b are identified by a resource index nPUCCH from which the cyclic shift  (ns , l ) is determined according to  (ns , l ) = 2  ncs (ns , l ) N scRB where 3GPP Release 8 20 3GPP TS 36.211 V8.9.0 (2009-12) ( ) RB ncs (ns , l ) = ncscell (ns , l ) + n' (ns ) mod N SC and n (2) mod N scRB n' (ns ) =  PUCCH (2) (1) RB  nPUCCH + N cs + 1 mod N sc ( ( 2) (2) if nPUCCH  N scRB N RB ) otherwise for ns mod 2 = 0 and by  (  ) ( ) ( 2) (2)  N RB (n' (ns − 1) + 1) mod N scRB + 1 − 1 if nPUCCH  N scRB N RB n' (ns ) =  scRB ( 2) RB otherwise  N sc − 2 − nPUCCH mod N sc for ns mod 2 = 1 . For PUCCH formats 2a and 2b, supported for normal cyclic prefix only, the bit(s) b(20),..., b(M bit − 1) shall be modulated as described in Table 5.4.2-1 resulting in a single modulation symbol d (10 ) used in the generation of the reference-signal for PUCCH format 2a and 2b as described in Section 5.5.2.2.1. Table 5.4.2-1: Modulation symbol d (10 ) for PUCCH formats 2a and 2b. PUCCH format b(20),..., b(M bit − 1) 0 1 00 01 2a 2b 5.4.3 10 11 d (10 ) 1 −1 1 −j j −1 Mapping to physical resources The block of complex-valued symbols z (i) shall be multiplied with the amplitude scaling factor  PUCCH in order to conform to the transmit power PPUCCH specified in Section 5.1.2.1 in [4], and mapped in sequence starting with z (0) to resource elements. PUCCH uses one resource block in each of the two slots in a subframe. Within the physical resource block used for transmission, the mapping of z (i) to resource elements (k, l ) not used for transmission of reference signals shall be in increasing order of first k , then l and finally the slot number, starting with the first slot in the subframe. The physical resource blocks to be used for transmission of PUCCH in slot ns is given by nPRB  m     2  =  N UL − 1 −  m  2  RB    if (m + ns mod 2) mod 2 = 0 if (m + ns mod 2) mod 2 = 1 where the variable m depends on the PUCCH format. For formats 1, 1a and 1b 3GPP Release 8 21 3GPP TS 36.211 V8.9.0 (2009-12) (2) (1)  N RB if n PUCCH  c  N cs(1) PUCCH shift  (1) (1) PUCCH  (1)   m =  n PUCCH − c  N cs  shift N (2) +  cs  otherwise  + N RB  RB PUCCH c  N sc  shift   8   3 normal cyclic prefix c= 2 extended cyclic prefix and for formats 2, 2a and 2b  (2) RB m = nPUCCH Nsc  Mapping of modulation symbols for the physical uplink control channel is illustrated in Figure 5.4.3-1. In case of simultaneous transmission of sounding reference signal and PUCCH format 1, 1a or 1b, one SC-FDMA symbol on PUCCH shall punctured. UL nPRB = N RB −1 nPRB = 0 m =1 m=3 m=0 m=2 m=2 m=0 m=3 m =1 One subframe Figure 5.4.3-1: Mapping to physical resource blocks for PUCCH. 5.5 Reference signals Two types of uplink reference signals are supported: - Demodulation reference signal, associated with transmission of PUSCH or PUCCH - Sounding reference signal, not associated with transmission of PUSCH or PUCCH The same set of base sequences is used for demodulation and sounding reference signals. 5.5.1 Generation of the reference signal sequence Reference signal sequence ru(,v ) (n) is defined by a cyclic shift  of a base sequence ru ,v ( n) according to RS ru(,v ) (n) = e jn ru ,v (n), 0  n  M sc max, UL RS RB where M sc is the length of the reference signal sequence and 1  m  N RB . Multiple reference signal = mNsc sequences are defined from a single base sequence through different values of  . Base sequences ru ,v ( n) are divided into groups, where u  0,1,..., 29 is the group number and v is the base sequence RS RB number within the group, such that each group contains one base sequence ( v = 0 ) of each length M sc , = mNsc RS RB max, UL 1  m  5 and two base sequences ( v = 0,1 ) of each length M sc , 6  m  N RB . The sequence group = mNsc number u and the number v within the group may vary in time as described in Sections 5.5.1.3 and 5.5.1.4, RS RS − 1) depends on the sequence length M sc . respectively. The definition of the base sequence ru ,v (0),..., ru ,v ( M sc 3GPP Release 8 5.5.1.1 22 3GPP TS 36.211 V8.9.0 (2009-12) Base sequences of length 3N scRB or larger RS RS RB For M sc , the base sequence ru ,v (0),..., ru ,v ( M sc − 1) is given by  3Nsc RS RS ru ,v (n) = xq (n mod N ZC ), 0  n  M sc where the q th root Zadoff-Chu sequence is defined by xq (m ) = e −j qm( m +1) RS N ZC RS , 0  m  N ZC −1 with q given by q = q + 1 2 + v  (−1) 2q  RS q = N ZC  (u + 1) 31 RS RS RS The length N ZC of the Zadoff-Chu sequence is given by the largest prime number such that N ZC .  M sc 5.5.1.2 Base sequences of length less than 3N scRB RS RB RS RB For M sc and M sc , base sequence is given by = Nsc = 2Nsc RS ru ,v (n) = e j ( n) 4 , 0  n  M sc −1 RS RB RS RB where the value of  (n) is given by Table 5.5.1.2-1 and Table 5.5.1.2-2 for M sc and M sc , = Nsc = 2Nsc respectively. 3GPP Release 8 23 3GPP TS 36.211 V8.9.0 (2009-12) RS RB Table 5.5.1.2-1: Definition of  (n) for M sc . = Nsc  (0),...,  (11) u 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 -1 1 1 -1 -1 1 -1 -3 1 1 -1 3 1 3 -3 3 1 -3 -3 -1 -1 -1 1 1 1 1 1 -3 -1 3 1 1 1 1 3 -3 3 -1 -3 -3 3 1 -3 3 1 -1 3 1 3 3 -3 3 1 1 1 -3 3 -1 3 -3 3 3 -3 1 1 3 -3 -1 3 -1 -1 -1 1 -3 -1 1 1 1 1 1 1 -1 -3 -1 3 3 -3 -3 -3 -3 -3 3 -3 1 -1 -1 -3 -1 1 3 1 -1 1 3 -3 -3 -1 3 1 3 1 1 -3 -3 1 3 -3 -1 3 -1 3 3 -3 1 1 -1 -3 1 -1 3 1 3 -3 -3 -1 -1 1 -3 -3 1 1 -3 -3 -1 3 1 3 -3 -1 -1 3 -1 -1 -1 -1 1 3 -3 -1 -1 -3 3 1 1 3 -1 3 3 1 -1 1 -3 -3 -3 3 3 -3 3 3 -3 3GPP 1 1 -3 -3 -3 1 1 3 -1 -3 -3 -3 1 1 1 1 3 -3 -3 -1 3 -3 -1 1 -1 3 1 1 3 -1 1 -3 -3 -3 -1 -1 -1 -1 1 1 -1 1 1 3 3 1 3 -3 -3 3 1 -3 3 -1 1 1 -1 -1 -3 3 3 -3 1 1 1 -1 3 1 1 1 -3 3 -3 -1 3 3 -1 3 -1 -3 -1 -3 -3 1 -1 -3 -1 1 3 -3 1 1 -3 -3 -1 3 3 -3 3 1 -3 1 -3 -3 3 1 -1 1 -1 -1 1 1 1 3 -3 -1 3 3 3 3 -3 -3 1 3 1 -3 -3 3 -1 1 3 3 -3 3 -1 -1 3 3 1 -3 -3 -1 -3 -1 -3 -1 -1 -3 -1 1 3 3 -1 -1 3 1 1 1 1 1 -1 3 1 3 1 -3 -1 -1 -3 -1 -1 -3 3 1 1 3 -3 -3 -1 -1 Release 8 24 3GPP TS 36.211 V8.9.0 (2009-12) RS RB Table 5.5.1.2-2: Definition of  (n) for M sc . = 2Nsc  (0),...,  (23) u 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 -1 -3 3 -1 -1 -3 1 -3 -3 1 -1 1 1 3 -3 -1 -1 1 1 1 -1 -3 -3 -1 1 1 -3 -1 -1 1 5.5.1.3 3 3 -1 -3 -1 1 1 3 1 1 1 3 3 -1 -3 -1 -3 3 1 3 -3 -3 -1 -1 -1 -1 -1 -3 -3 1 1 -3 3 1 -1 1 -1 3 3 -3 -3 3 3 -1 3 1 3 -1 1 3 3 1 -3 -1 3 1 1 3 -1 -1 -3 -3 3 1 -3 3 -1 -1 -3 3 -3 -3 1 -1 1 -3 -1 3 1 1 -3 1 3 -1 3 -1 3 3 -1 -1 3 -3 1 3 -3 -1 3 -1 1 3 3 -3 1 -1 3 1 -1 3 1 -1 -3 -1 1 3 -1 3 1 1 1 -3 -1 1 1 -3 -1 1 -3 -3 -1 -1 -1 1 1 -3 1 3 -1 -1 -1 -3 -3 1 -1 3 -3 -1 1 1 -3 -1 1 -3 -3 1 1 3 -3 -1 -3 -3 3 3 -1 -1 -3 -3 -1 -3 3 3 -1 -1 -3 3 3 3 -3 3 -1 3 3 -3 3 1 1 1 3 3 3 -1 -1 1 -1 3 3 1 1 1 -1 -1 -1 1 -1 1 -3 1 -1 -1 -1 -1 -3 3 3 -3 3 -3 -3 1 -3 3 -1 -1 1 3 1 -1 1 -1 -3 3 -3 -1 -3 3 -1 1 -1 -3 1 3 3 -1 3 -1 3 1 1 3 3 -3 -3 -3 -3 1 3 -3 -3 -3 1 3 -1 3 -3 3 -1 -1 -3 -1 -1 -1 1 1 3 -1 -1 -3 -1 1 -1 3 -3 -3 3 -1 1 -1 3 3 1 3 -3 1 3 -3 3 -1 3 -1 -3 1 3 1 1 1 3 1 -1 3 -1 3 -3 -3 -1 1 1 3 1 3 3 -3 3 -3 -3 1 -1 -3 -3 -1 1 3 -3 1 -1 3 -1 1 1 1 -1 3 -1 3 1 3 3 1 3 3 -3 1 1 -1 3 3 3 1 3 3 1 1 3 3 3 1 1 -1 -1 1 -1 -1 -3 3 1 3 3 3 3 -1 1 -1 3 1 -3 -1 -1 1 1 1 -3 -1 1 1 -1 3 -1 -1 1 -1 1 1 -3 -3 -3 3 -1 1 1 1 -3 1 -3 -1 -1 3 -1 -3 -3 -3 1 3 1 -1 1 1 -3 3 1 3 -3 1 1 3 3 -1 -1 -1 -1 1 -1 -1 -1 1 1 -1 1 1 3 -3 -3 1 -1 3 1 -1 1 -1 -1 1 -3 -3 -1 3 3 1 -3 -3 1 3 1 -3 3 -1 3 3 1 3 -3 -1 -3 3 1 -3 -1 3 -1 -3 -3 -1 -3 1 1 -1 -1 1 1 -3 -3 -1 1 -1 -1 -1 1 3 1 -3 1 3 3 -3 3 -3 -3 1 -3 3 -1 1 1 -1 3 -3 -3 -3 -3 -1 1 -3 -3 1 1 3 -3 -3 1 1 -1 -3 1 -3 -3 1 -1 1 -3 -3 1 3 -3 1 3 3 3 1 -1 -1 -3 -1 -3 3 -1 3 1 3 -1 1 1 -1 1 1 3 3 -1 -3 1 -3 -1 -3 -3 1 -1 -1 -3 3 3 -3 1 3 3 -1 3 -3 3 1 -1 -3 -3 -3 -1 -1 -3 1 1 -1 -3 -3 3 -1 -3 -3 1 1 -1 -1 1 -3 1 -1 1 3 -3 -1 3 -1 -3 -3 1 -1 3 -1 -1 1 3 -3 -1 1 -1 -1 1 1 -1 -3 -3 -3 1 -3 -3 -1 1 -3 1 1 -1 3 -1 -1 1 -3 -1 1 -3 -3 3 -1 -1 1 -3 1 -3 1 3 1 -1 3 3 -1 -1 -1 -3 -3 -1 -3 -3 3 3 -1 1 -1 -1 3 Group hopping The sequence-group number u in slot ns is defined by a group hopping pattern f gh (ns ) and a sequence-shift pattern f ss according to ( ) u = f gh (ns ) + f ss mod 30 There are 17 different hopping patterns and 30 different sequence-shift patterns. Sequence-group hopping can be enabled or disabled by means of the parameter Group-hopping-enabled provided by higher layers. PUCCH and PUSCH have the same hopping pattern but may have different sequence-shift patterns. The group-hopping pattern f gh (ns ) is the same for PUSCH and PUCCH and given by 0   fgh (ns ) =     if group hopping is disabled  7 c(8ns i =0 i + i )  2  mod 30 if group hopping is enabled  where the pseudo-random sequence c(i ) is defined by section 7.2. The pseudo-random sequence generator shall be  N cell  initialized with c init =  ID  at the beginning of each radio frame.  30  The sequence-shift pattern f ss definition differs between PUCCH and PUSCH. cell For PUCCH, the sequence-shift pattern f ssPUCCH is given by f ssPUCCH = N ID mod 30 . 3GPP Release 8 25 3GPP TS 36.211 V8.9.0 (2009-12) ( ) For PUSCH, the sequence-shift pattern f ssPUSCH is given by f ssPUSCH = f ssPUCCH +  ss mod 30 , where  ss  0,1,..., 29 is configured by higher layers. 5.5.1.4 Sequence hopping RS RB Sequence hopping only applies for reference-signals of length M sc .  6Nsc RS RB For reference-signals of length M sc , the base sequence number v within the base sequence group is given by  6Nsc v=0. RS RB For reference-signals of length M sc , the base sequence number v within the base sequence group in slot n s  6Nsc is defined by c(n ) if group hopping is disabled and sequence hopping is enabled v= s otherwise 0 where the pseudo-random sequence c(i ) is given by section 7.2. The parameter Sequence-hopping-enabled provided by higher layers determines if sequence hopping is enabled or not. The pseudo-random sequence generator shall be  N cell  initialized with cinit =  ID   2 5 + f ssPUSCH at the beginning of each radio frame.  30  5.5.2 Demodulation reference signal 5.5.2.1 Demodulation reference signal for PUSCH 5.5.2.1.1 Reference signal sequence The demodulation reference signal sequence r PUSCH () for PUSCH is defined by ( ) RS r PUSCH m  M sc + n = ru(,v ) (n ) where m = 0,1 RS n = 0,..., M sc −1 and RS PUSCH M sc = M sc RS − 1) . Section 5.5.1 defines the sequence ru(,v ) (0),..., ru(,v ) ( M sc The cyclic shift  in a slot ns is given as  = 2 ncs /12 with ( ) (1) ( 2) ncs = nDMRS + nDMRS + nPRS (ns ) mod 12 where the values of (1) is given by Table 5.5.2.1.1-2 according to the parameter cyclicShift provided by higher nDMRS ( 2) layers, n DMRS is given by the cyclic shift for DMRS field in most recent DCI format 0 [3] for the transport block ( 2) associated with the corresponding PUSCH transmission where the values of n DMRS is given in Table 5.5.2.1.1-1. 3GPP Release 8 26 3GPP TS 36.211 V8.9.0 (2009-12) ( 2) n DMRS shall be set to zero, if there is no PDCCH with DCI format 0 for the same transport block, and • if the initial PUSCH for the same transport block is semi-persistently scheduled, or , • if the initial PUSCH for the same transport block is scheduled by the random access response grant n PRS (n s ) is given by nPRS (n s ) =  7 i =0 UL c(8N symb  n s + i)  2 i where the pseudo-random sequence c(i ) is defined by section 7.2. The application of c(i ) is cell-specific. The pseudo-  N cell  cinit =  ID   2 5 + f ssPUSCH  30  random sequence generator shall be initialized with at the beginning of each radio frame. ( 2) Table 5.5.2.1.1-1: Mapping of Cyclic Shift Field in DCI format 0 to n DMRS Values. Cyclic Shift Field in DCI format 0 [3] ( 2) n DMRS 000 0 001 6 010 3 011 4 100 2 101 8 110 10 111 9 Table 5.5.2.1.1-2: Mapping of cyclicShift to cyclicShift (1) nDMRS 0 0 1 2 2 3 3 4 4 6 5 8 6 9 7 10 3GPP (1) Values. nDMRS Release 8 27 5.5.2.1.2 3GPP TS 36.211 V8.9.0 (2009-12) Mapping to physical resources The sequence r PUSCH () shall be multiplied with the amplitude scaling factor  PUSCH and mapped in sequence starting with r PUSCH (0) to the same set of physical resource blocks used for the corresponding PUSCH transmission defined in Section 5.3.4. The mapping to resource elements (k , l ) , with l = 3 for normal cyclic prefix and l = 2 for extended cyclic prefix, in the subframe shall be in increasing order of first k , then the slot number. 5.5.2.2 Demodulation reference signal for PUCCH 5.5.2.2.1 Reference signal sequence The demodulation reference signal sequence r PUCCH () for PUCCH is defined by ( ) PUCCH RS RS r PUCCH m' N RS M sc + mM sc + n = w (m) z (m)ru(,v ) (n) where PUCCH m = 0,..., N RS −1 RS n = 0,..., M sc −1 m' = 0,1 For PUCCH format 2a and 2b, z (m) equals d (10 ) for m = 1 , where d (10 ) is defined in Section 5.4.2. For all other cases, z (m) = 1. RS The sequence ru(,v ) (n) is given by Section 5.5.1 with M sc = 12 where the expression for the cyclic shift  is determined by the PUCCH format. For PUCCH formats 1, 1a and 1b,  (ns , l ) is given by  noc (ns )= n(ns )  PUCCH N shift   (ns , l )= 2  ncs (ns , l ) N scRB   ( ( ( ))   n cell (n , l ) + n(n )  PUCCH + n (n ) mod PUCCH mod N  mod N RB  cs s s shift oc s shift sc ncs (ns , l )=  cell PUCCH RB  ncs (ns , l ) + n(ns )   shift + noc (ns ) mod N  mod N sc )  for normal cyclic prefix for extended cyclic prefix cell where n(ns ) , N  , PUCCH and ncs (ns , l ) are defined by Section 5.4.1. The number of reference symbols per slot shift PUCCH and the sequence w (n) are given by Table 5.5.2.2.1-1 and 5.5.2.2.1-2, respectively. N RS For PUCCH formats 2, 2a and 2b,  (ns , l ) is defined by Section 5.4.2. The number of reference symbols per slot PUCCH and the sequence w (n) are given by Table 5.5.2.2.1-1 and 5.5.2.2.1-3, respectively. N RS PUCCH Table 5.5.2.2.1-1: Number of PUCCH demodulation reference symbols per slot N RS . PUCCH format 1, 1a, 1b 2 2a, 2b Normal cyclic prefix 3 2 2 3GPP Extended cyclic prefix 2 1 N/A Release 8 28 3GPP TS 36.211 V8.9.0 (2009-12)  PUCCH Table 5.5.2.2.1-2: Orthogonal sequences w (0)  w ( N RS − 1) Sequence index noc (ns ) Normal cyclic prefix 1 0 1 1 1 2 1 1 e j 2 3 e j 4 3 e j 4 3 e j 2 3  Extended cyclic prefix 1 1   1  1 1 5.5.2.2.2 − 1 N/A PUCCH Table 5.5.2.2.1-3: Orthogonal sequences w (0)  w ( N RS − 1) Normal cyclic prefix for PUCCH formats 1, 1a and 1b.  for PUCCH formats 2, 2a, 2b. Extended cyclic prefix 1 Mapping to physical resources The sequence r PUCCH () shall be multiplied with the amplitude scaling factor  PUCCH and mapped in sequence starting with r PUCCH (0) to resource elements (k , l ) . The mapping shall be in increasing order of first k , then l and finally the slot number. The same set of values for k as for the corresponding PUCCH transmission shall be used. The values of the symbol index l in a slot are given by Table 5.5.2.2.2-1. Table 5.5.2.2.2-1: Demodulation reference signal location for different PUCCH formats PUCCH format 1, 1a, 1b 2 2a, 2b 5.5.3 5.5.3.1 Set of values for l Normal cyclic prefix Extended cyclic prefix 2, 3, 4 2, 3 1, 5 3 1, 5 N/A Sounding reference signal Sequence generation The sounding reference signal sequence r SRS (n ) = ru(,v ) (n ) is defined by Section 5.5.1, where u is the PUCCH sequence-group number defined in Section 5.5.1.3 and  is the base sequence number defined in Section 5.5.1.4. The cyclic shift  of the sounding reference signal is given as  = 2 cs n SRS , 8 cs cs where n SRS is configured for each UE by higher layers and n SRS = 0, 1, 2, 3, 4, 5, 6, 7 . 5.5.3.2 Mapping to physical resources The sequence shall be multiplied with the amplitude scaling factor  SRS in order to conform to the transmit power PSRS specified in Section 5.1.3.1 in [4], and mapped in sequence starting with r SRS (0) to resource elements (k , l ) according to RS  r SRS (k ) k = 0,1,..., M sc, b −1 a2 k +k0 ,l =  SRS 0 otherwise  3GPP Release 8 29 3GPP TS 36.211 V8.9.0 (2009-12) where k 0 is the frequency-domain starting position of the sounding reference signal and for RS is the b = BSRS M sc,b length of the sounding reference signal sequence defined as RS RB M sc, 2 b = mSRS, b Nsc where mSRS, b is given by Table 5.5.3.2-1 through Table 5.5.3.2-4 for each uplink bandwidth UL . The cell-specific N RB parameter srs-BandwidthConfig CSRS {0,1,2,3,4,5,6,7} and the UE-specific parameter srs-Bandwidth BSRS  {0,1,2,3} are   ( ) max c UL given by higher layers. For UpPTS, mSRS,0 shall be reconfigured to mSRS if , 0 = max cC mSRS , 0  N RB − 6 N RA this reconfiguration is enabled by the cell specific parameter srsMaxUpPts given by higher layers, otherwise if the reconfiguration is disabled max mSRS , 0 = mSRS , 0 ,where c is a SRS BW configuration and CSRS is the set of SRS BW configurations from the Tables 5.5.3.2-1 to 5.5.3.2-4 for each uplink bandwidth PRACH in the addressed UpPTS and derived from Table 5.7.1-4. The frequency-domain starting position UL , N RA is the number of format 4 N RB k0 is defined by BSRS RS k0 = k0 +  2M sc, b nb b=0 where for normal uplink subframes ( ) UL RB k 0 = N RB / 2 − mSRS, 0 2 N SC + k TC , for UpPTS k 0' is defined by: max RB ( N UL − mSRS , 0 ) N sc + kTC k0' =  RB kTC ( ) if (n f mod 2)  (2 − N SP ) + nhf mod 2 = 0 otherwise k TC  {0,1} is the parameter transmissionComb provided by higher layers for the UE, and nb is frequency position index. nhf is equal to 0 for UpPTS in first half frame, and equal to 1 for UpPTS in second half frame. The frequency hopping of the sounding reference signal is configured by the parameter srs-HoppingBandwidth, bhop {0,1,2,3} , provided by higher layers. If frequency hopping of the sounding reference signal is not enabled (i.e., bhop  BSRS ), the frequency position index nb remains constant (unless re-configured) and is defined by nb = 4n RRC mSRS, b  mod N b where the parameter freqDomainPosition nRRC is given by higher layers for the UE. If frequency hopping of the sounding reference signal is enabled (i.e., bhop  BSRS ), the frequency position indexes are defined by  4nRRC mSRS, b  mod N b nb =  Fb (nSRS ) + 4nRRC mSRS, b mod N b where b  bhop otherwise UL N b is given by Table 5.5.3.2-1 through Table 5.5.3.2-4 for each uplink bandwidth N RB ,   n SRS mod  bb '=bhop N b '   n SRS mod  bb '=bhop N b '  ( N b / 2)  +  if N b even Fb (n SRS ) =   bb '−=1bhop N b ' 2 bb '−=1bhop N b '      b −1 if N b odd N b / 2 n SRS /  b '=bhop N b '    where N b = 1 regardless of the N b value on Table 5.5.3.2-1 through Table 5.5.3.2-4, and hop nSRS   n   Toffset  2 N SP n f + 2(N SP − 1) s  +  , =  10   Toffset _ max   (n f  10 + ns / 2) / TSRS , for 2ms SRS periodicit y of frame structure 2 otherwise 3GPP nb Release 8 30 3GPP TS 36.211 V8.9.0 (2009-12) counts the number of UE-specific SRS transmissions, where TSRS is UE-specific periodicity of SRS transmission defined in section 8.2 of [4], Toffset is SRS subframe offset defined in Table 8.2-2 of [4] and Toffset_ max is the maximum value of Toffset for a certain configuration of SRS subframe offset. For all subframes other than special subframes, the sounding reference signal shall be transmitted in the last symbol of the subframe. Table 5.5.3.2-1: mSRS, b and SRS bandwidth configuration UL N b , b = 0,1,2,3 , values for the uplink bandwidth of 6  N RB  40 . SRS-Bandwidth SRS-Bandwidth SRS-Bandwidth SRS-Bandwidth BSRS = 0 BSRS = 1 BSRS = 2 BSRS = 3 CSRS mSRS, 0 N0 mSRS, 1 N1 mSRS, 2 N2 mSRS, 3 N3 0 1 2 3 4 5 6 7 36 32 24 20 16 12 8 4 1 1 1 1 1 1 1 1 12 16 4 4 4 4 4 4 3 2 6 5 4 3 2 1 4 8 4 4 4 4 4 4 3 2 1 1 1 1 1 1 4 4 4 4 4 4 4 4 1 2 1 1 1 1 1 1 Table 5.5.3.2-2: mSRS, b and SRS bandwidth configuration UL N b , b = 0,1,2,3 , values for the uplink bandwidth of 40  N RB  60 . SRS-Bandwidth SRS-Bandwidth BSRS = 1 BSRS = 0 SRS-Bandwidth SRS-Bandwidth BSRS = 2 BSRS = 3 CSRS mSRS, 0 N0 mSRS, 1 N1 mSRS, 2 N2 mSRS, 3 N3 0 1 2 3 4 5 6 7 48 48 40 36 32 24 20 16 1 1 1 1 1 1 1 1 24 16 20 12 16 4 4 4 2 3 2 3 2 6 5 4 12 8 4 4 8 4 4 4 2 2 5 3 2 1 1 1 4 4 4 4 4 4 4 4 3 2 1 1 2 1 1 1 Table 5.5.3.2-3: mSRS, b and SRS bandwidth configuration UL N b , b = 0,1,2,3 , values for the uplink bandwidth of 60  N RB  80 . SRS-Bandwidth SRS-Bandwidth SRS-Bandwidth SRS-Bandwidth CSRS mSRS, 0 N0 mSRS, 1 N1 mSRS, 2 N2 mSRS, 3 N3 0 1 2 3 4 5 6 7 72 64 60 48 48 40 36 32 1 1 1 1 1 1 1 1 24 32 20 24 16 20 12 16 3 2 3 2 3 2 3 2 12 16 4 12 8 4 4 8 2 2 5 2 2 5 3 2 4 4 4 4 4 4 4 4 3 4 1 3 2 1 1 2 BSRS = 0 BSRS = 1 3GPP BSRS = 2 BSRS = 3 Release 8 31 Table 5.5.3.2-4: mSRS, b and SRS bandwidth configuration 5.5.3.3 3GPP TS 36.211 V8.9.0 (2009-12) UL N b , b = 0,1,2,3 , values for the uplink bandwidth of 80  N RB  110 . SRS-Bandwidth SRS-Bandwidth SRS-Bandwidth SRS-Bandwidth BSRS = 0 BSRS = 1 BSRS = 2 BSRS = 3 CSRS mSRS, 0 N0 mSRS, 1 N1 mSRS, 2 N2 mSRS, 3 N3 0 1 2 3 4 5 6 7 96 96 80 72 64 60 48 48 1 1 1 1 1 1 1 1 48 32 40 24 32 20 24 16 2 3 2 3 2 3 2 3 24 16 20 12 16 4 12 8 2 2 2 2 2 5 2 2 4 4 4 4 4 4 4 4 6 4 5 3 4 1 3 2 Sounding reference signal subframe configuration The cell specific subframe configuration period TSFC and the cell specific subframe offset  SFC for the transmission of sounding reference signals are listed in Tables 5.5.3.3-1 and 5.5.3.3-2, for FDD and TDD, respectively. Sounding reference signal subframes are the subframes satisfying ns / 2 mod TSFC   SFC . For TDD, sounding reference signal is transmitted only in configured UL subframes or UpPTS. Table 5.5.3.3-1: FDD sounding reference signal subframe configuration srsSubframeConfiguration Configuration Period TSFC Binary (subframes) Transmission offset  SFC (subframes) 0 0000 1 {0} 1 0001 2 {0} 2 0010 2 {1} 3 0011 5 {0} 4 0100 5 {1} 5 0101 5 {2} 6 0110 5 {3} 7 0111 5 {0,1} 8 1000 5 {2,3} 9 1001 10 {0} 10 1010 10 {1} 11 1011 10 {2} 12 1100 10 {3} 13 1101 10 {0,1,2,3,4,6,8} 14 1110 10 {0,1,2,3,4,5,6,8} 3GPP Release 8 32 15 1111 3GPP TS 36.211 V8.9.0 (2009-12) reserved reserved Table 5.5.3.3-2: TDD sounding reference signal subframe configuration srsSubframeConfiguration Configuration Period TSFC Binary (subframes) 5.6 Transmission offset  SFC (subframes) 0 0000 5 {1} 1 0001 5 {1, 2} 2 0010 5 {1, 3} 3 0011 5 {1, 4} 4 0100 5 {1, 2, 3} 5 0101 5 {1, 2, 4} 6 0110 5 {1, 3, 4} 7 0111 5 {1, 2, 3, 4} 8 1000 10 {1, 2, 6} 9 1001 10 {1, 3, 6} 10 1010 10 {1, 6, 7} 11 1011 10 {1, 2, 6, 8} 12 1100 10 {1, 3, 6, 9} 13 1101 10 {1, 4, 6, 7} 14 1110 reserved reserved 15 1111 reserved reserved SC-FDMA baseband signal generation This section applies to all uplink physical signals and physical channels except the physical random access channel. The time-continuous signal sl (t ) in SC-FDMA symbol l in an uplink slot is defined by sl (t ) = UL RB N sc / 2  −1 N RB   UL RB k = − N RB N sc / 2 a k ( − ) ,l  e j 2 (k +1 2 )f (t − N CP,l Ts )  RB for 0  t  (N CP ,l + N ) Ts where k (−) = k + N UL RB N sc 2 , N = 2048 , f = 15 kHz and a k ,l is the content of resource  element (k, l ) .  The SC-FDMA symbols in a slot shall be transmitted in increasing order of l , starting with l = 0 , where SC-FDMA symbol l  0 starts at time  l −1 l  =0 ( N CP,l  + N )Ts within the slot. 3GPP Release 8 33 3GPP TS 36.211 V8.9.0 (2009-12) Table 5.6-1lists the values of N CP ,l that shall be used. Note that different SC-FDMA symbols within a slot may have different cyclic prefix lengths. Table 5.6-1: SC-FDMA parameters. Configuration Cyclic prefix length N CP ,l 160 for l = 0 144 for l = 1,2,...,6 512 for l = 0,1,...,5 Normal cyclic prefix Extended cyclic prefix 5.7 Physical random access channel 5.7.1 Time and frequency structure The physical layer random access preamble, illustrated in Figure 5.7.1-1, consists of a cyclic prefix of length TCP and a sequence part of length TSEQ . The parameter values are listed in Table 5.7.1-1 and depend on the frame structure and the random access configuration. Higher layers control the preamble format. CP Sequence TCP TSEQ Figure 5.7.1-1: Random access preamble format. Table 5.7.1-1: Random access preamble parameters. Preamble format TSEQ TCP 0 3168  Ts 24576  Ts 1 21024  Ts 24576  Ts 2 6240  Ts 2  24576  Ts 3 21024  Ts 2  24576  Ts 4* 448  Ts 4096  Ts * Frame structure type 2 and special subframe configurations with UpPTS lengths 4384  Ts and 5120  Ts only. The transmission of a random access preamble, if triggered by the MAC layer, is restricted to certain time and frequency resources. These resources are enumerated in increasing order of the subframe number within the radio frame and the physical resource blocks in the frequency domain such that index 0 correspond to the lowest numbered physical resource block and subframe within the radio frame. PRACH resources within the radio frame are indicated by a PRACH Resource Index, where the indexing is in the order of appearance in Table 5.7.1-2 and Table 5.7.1-4. For frame structure type 1 with preamble format 0-3, there is at most one random access resource per subframe. Table 5.7.1-2 lists the preamble formats according to Table 5.7.1-1 and the subframes in which random access preamble transmission is allowed for a given configuration in frame structure type 1. The parameter prach-ConfigurationIndex is given by higher layers. The start of the random access preamble shall be aligned with the start of the corresponding uplink subframe at the UE assuming NTA = 0 , where N TA is defined in section 8.1. For PRACH configuration 0, 1, 2, 15, 16, 17, 18, 31, 32, 33, 34, 47, 48, 49, 50 and 63 the UE may for handover purposes assume an absolute value of the relative time difference between radio frame i in the current cell and the target cell of less than 153600  Ts . The first physical resource block RA n PRB allocated to the PRACH opportunity considered for preamble format 0, 1, 2 and 3 is 3GPP Release 8 defined as 34 3GPP TS 36.211 V8.9.0 (2009-12) RA RA RA nPRB = nPRB offset , where the parameter prach-FrequencyOffset nPRBoffset is expressed as a physical resource block number configured by higher layers and fulfilling RA UL 0  nPRBoffset  N RB −6. Table 5.7.1-2: Frame structure type 1 random access configuration for preamble format 0-3. PRACH Configuration Index 0 1 2 3 4 5 6 7 8 9 10 11 12 Preamble Format 0 0 0 0 0 0 0 0 0 0 0 0 0 System frame number Even Even Even Any Any Any Any Any Any Any Any Any Any 13 0 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Subframe number Preamble Format 1 4 7 1 4 7 1, 6 2 ,7 3, 8 1, 4, 7 2, 5, 8 3, 6, 9 0, 2, 4, 6, 8 PRACH Configuration Index 32 33 34 35 36 37 38 39 40 41 42 43 44 2 2 2 2 2 2 2 2 2 2 2 2 2 System frame number Even Even Even Any Any Any Any Any Any Any Any Any Any Subframe number Any 1, 3, 5, 7, 9 45 2 Any 0 Any 46 N/A N/A 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 N/A 1 Even Even Even Even Any Any Any Any Any Any Any Any Any Any Any N/A Even 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 9 1 4 7 1 4 7 1, 6 2 ,7 3, 8 1, 4, 7 2, 5, 8 3, 6, 9 0, 2, 4, 6, 8 1, 3, 5, 7, 9 N/A 9 1 4 7 1 4 7 1, 6 2 ,7 3, 8 1, 4, 7 2, 5, 8 3, 6, 9 0, 2, 4, 6, 8 1, 3, 5, 7, 9 N/A 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 2 3 3 3 3 3 3 3 3 3 3 3 3 N/A N/A N/A 3 Even Even Even Even Any Any Any Any Any Any Any Any Any N/A N/A N/A Even 9 1 4 7 1 4 7 1, 6 2 ,7 3, 8 1, 4, 7 2, 5, 8 3, 6, 9 N/A N/A N/A 9 For frame structure type 2 with preamble format 0-4, there might be multiple random access resources in an UL subframe (or UpPTS for preamble format 4) depending on the UL/DL configuration [see table 4.2-2]. Table 5.7.1-3 lists PRACH configurations allowed for frame structure type 2 where the configuration index corresponds to a certain combination of preamble format, PRACH density value, DRA , and version index, rRA . The parameter prachConfigurationIndex is given by higher layers. For frame structure 2 PRACH configuration 0, 1, 2, 20, 21, 22, 30, 31, 32, 40, 41, 42, 48, 49 and 50, the UE may for handover purposes assume an absolute value of the relative time difference between radio frame i in the current cell and the target cell is less than 153600  Ts . 3GPP Release 8 35 3GPP TS 36.211 V8.9.0 (2009-12) Table 5.7.1-3: Frame structure type 2 random access configurations for preamble format 0-4 PRACH configuration Index Preamble Format Density Per 10 ms Version (rRA ) PRACH configuration Index Preamble Format Density Per 10 ms Version 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 0.5 0.5 0.5 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 0.5 0.5 0.5 1 1 2 3 4 5 6 0.5 0.5 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 0 1 2 0 1 0 0 0 0 0 0 1 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 N/A N/A N/A N/A N/A N/A 0.5 1 1 2 3 4 5 6 0.5 0.5 0.5 1 1 2 3 4 0.5 0.5 0.5 1 1 2 3 4 5 6 N/A N/A N/A N/A N/A N/A 2 0 1 0 0 0 0 0 0 1 2 0 1 0 0 0 0 1 2 0 1 0 0 0 0 0 N/A N/A N/A N/A N/A N/A (DRA ) (DRA ) (rRA ) Table 5.7.1-4 lists the mapping to physical resources for the different random access opportunities needed for a certain 0 2 , t 1RA , t RA ) indicates the location of a specific DRA . Each quadruple of the format ( f RA , t RA random access resource, where f RA is a frequency resource index within the considered time instance, 0 t RA = 0,1,2 indicates whether the resource is reoccurring in all radio frames, in even radio frames, or in odd radio 1 frames, respectively, t RA = 0,1 indicates whether the random access resource is located in first half frame or in second 2 half frame, respectively, and where t RA is the uplink subframe number where the preamble starts, counting from 0 at PRACH density value, the first uplink subframe between 2 consecutive downlink-to-uplink switch points, with the exception of preamble 2 format 4 where t RA is denoted as (*). The start of the random access preamble formats 0-3 shall be aligned with the start of the corresponding uplink subframe at the UE assuming NTA = 0 and the random access preamble format 4 shall start 4832  Ts before the end of the UpPTS at the UE, where the UpPTS is referenced to the UE’s uplink frame timing assuming NTA = 0 . The random access opportunities for each PRACH configuration shall be allocated in time first and then in frequency if and only if time multiplexing is not sufficient to hold all opportunities of a PRACH configuration needed for a certain density value DRA without overlap in time. For preamble format 0-3, the frequency multiplexing shall be done according to 3GPP Release 8 36 RA nPRB where 3GPP TS 36.211 V8.9.0 (2009-12)  RA f  nPRB offset + 6 RA , if f RA mod 2 = 0    2  =  f RA  UL RA  N RB − 6 − nPRB offset − 6  , otherwise   2   RA UL is the number of uplink resource blocks, n PRB is the first physical resource block allocated to the PRACH N RB opportunity considered and where the parameter prach-FrequencyOffset RA nPRB offset is the first physical resource block available for PRACH expressed as a physical resource block number configured by higher layers and fulfilling RA UL 0  nPRBoffset  N RB −6. For preamble format 4, the frequency multiplexing shall be done according to n RA PRB ( ) 6 f RA , if (n f mod 2)  (2 − N SP ) + t 1RA mod 2 = 0 =  UL  N RB − 6( f RA + 1), otherwise where nf is the system frame number and where N SP is the number of DL to UL switch points within the radio frame. Each random access preamble occupies a bandwidth corresponding to 6 consecutive resource blocks for both frame structures. 3GPP Release 8 37 3GPP TS 36.211 V8.9.0 (2009-12) Table 5.7.1-4: Frame structure type 2 random access preamble mapping in time and frequency. PRACH configuration Index (See Table 5.7.1-3) 0 1 2 3 4 5 6 7 8 9 10 11 12 1 (0,1,0,2) (0,2,0,2) (0,1,1,2) (0,0,0,2) (0,0,1,2) (0,0,0,1) (0,0,0,2) (0,0,1,2) (0,0,0,1) (0,0,1,1) (0,0,0,0) (0,0,1,0) (0,0,0,1) (0,0,0,2) (0,0,1,2) (0,0,0,0) (0,0,1,0) (0,0,1,1) N/A (0,1,0,1) (0,2,0,1) (0,1,1,1) (0,0,0,1) (0,0,1,1) (0,0,0,0) (0,0,0,1) (0,0,1,1) (0,0,0,0) (0,0,1,0) N/A (0,1,0,0) (0,2,0,0) (0,1,1,0) (0,0,0,0) (0,0,1,0) N/A (0,0,0,0) (0,0,1,0) N/A (0,0,0,0) (0,0,0,1) (0,0,1,1) (0,0,0,1) (0,0,1,0) (0,0,1,1) (0,0,0,0) (0,0,0,1) (0,0,1,0) (0,0,0,0) (0,0,0,1) (0,0,1,0) (0,0,1,1) N/A (0,0,0,0) (0,0,1,0) (1,0,0,0) (0,0,0,0) (0,0,1,0) (1,0,1,0) N/A N/A N/A (0,0,0,0) (0,0,0,1) (0,0,1,0) (0,0,1,1) (1,0,0,1) (0,0,0,0) (0,0,0,1) (0,0,1,0) (0,0,1,1) (1,0,1,1) (0,0,0,0) (0,0,0,1) (0,0,1,0) (0,0,1,1) (1,0,0,0) (0,0,0,0) (0,0,0,1) (0,0,1,0) (0,0,1,1) (1,0,0,1) (1,0,1,1) (0,0,0,0) (0,0,0,1) (0,0,1,0) (0,0,1,1) (1,0,0,0) (1,0,1,0) (0,1,0,0) (0,2,0,0) (0,0,0,0) (0,0,1,0) (1,0,0,0) (1,0,1,0) (2,0,0,0) (0,0,0,0) (0,0,1,0) (1,0,0,0) (1,0,1,0) (2,0,1,0) N/A 19 (0,0,0,1) (0,0,0,2) (0,0,1,1) (0,0,1,2) (0,0,0,0) (0,0,0,2) (0,0,1,0) (0,0,1,2) (0,0,0,0) (0,0,0,1) (0,0,1,0) (0,0,1,1) (0,0,0,0) (0,0,0,1) (0,0,0,2) (0,0,1,1) (0,0,1,2) (0,0,0,1) (0,0,0,2) (0,0,1,0) (0,0,1,1) (0,0,1,2) (0,0,0,0) (0,0,0,1) (0,0,0,2) (0,0,1,0) (0,0,1,2) (0,0,0,0) (0,0,0,1) (0,0,0,2) (0,0,1,0) (0,0,1,1) (0,0,1,2) N/A 20 / 30 21 / 31 (0,1,0,1) (0,2,0,1) 13 14 15 16 17 18 UL/DL configuration (See Table 4.2-2) 2 3 4 0 5 6 (0,1,0,1) (0,2,0,1) (0,1,0,0) (0,0,0,1) (0,0,0,0) N/A (0,0,0,0) (0,0,0,1) N/A (0,1,0,0) (0,2,0,0) N/A (0,0,0,0) N/A N/A (0,0,0,0) (1,0,0,0) N/A N/A N/A (0,0,0,0) (0,0,0,1) (1,0,0,1) (0,0,0,0) (0,0,0,1) (1,0,0,0) N/A (0,0,0,0) (1,0,0,0) (2,0,0,0) N/A (0,0,0,0) (0,0,0,1) (1,0,0,0) (1,0,0,1) N/A (0,0,0,0) (1,0,0,0) (2,0,0,0) (3,0,0,0) N/A N/A N/A (0,0,0,0) (0,0,0,1) (1,0,0,0) (1,0,0,1) (2,0,0,1) (0,0,0,0) (0,0,0,1) (1,0,0,0) (1,0,0,1) (2,0,0,0) N/A (0,0,0,0) (1,0,0,0) (2,0,0,0) (3,0,0,0) (4,0,0,0) N/A N/A N/A (0,0,0,0) (0,0,1,0) (1,0,0,0) (1,0,1,0) (2,0,0,0) (2,0,1,0) N/A (0,0,0,0) (0,0,0,1) (0,0,0,2) (1,0,0,2) (0,0,0,0) (0,0,0,1) (0,0,0,2) (1,0,0,1) (0,0,0,0) (0,0,0,1) (0,0,0,2) (1,0,0,0) (0,0,0,0) (0,0,0,1) (0,0,0,2) (1,0,0,1) (1,0,0,2) (0,0,0,0) (0,0,0,1) (0,0,0,2) (1,0,0,0) (1,0,0,2) (0,0,0,0) (0,0,0,1) (0,0,0,2) (1,0,0,0) (1,0,0,1) (0,0,0,0) (0,0,0,1) (0,0,0,2) (1,0,0,0) (1,0,0,1) (1,0,0,2) N/A (0,1,0,2) (0,2,0,2) (0,1,1,1) (0,0,0,2) (0,0,1,1) (0,0,0,1) (0,0,0,2) (0,0,1,1) (0,0,0,1) (0,0,1,0) (0,0,0,0) (0,0,1,1) (0,0,0,1) (0,0,0,2) (0,0,1,1) (0,0,0,0) (0,0,0,2) (0,0,1,0) (0,0,0,1) (0,0,1,0) (0,0,1,1) (0,0,0,1) (0,0,0,2) (0,0,1,0) (0,0,1,1) (0,0,0,0) (0,0,0,1) (0,0,0,2) (0,0,1,1) (0,0,0,0) (0,0,0,2) (0,0,1,0) (0,0,1,1) (0,0,0,0) (0,0,0,1) (0,0,0,2) (0,0,1,0) (0,0,1,1) N/A (0,0,0,0) (0,0,0,1) (1,0,0,0) (1,0,0,1) (2,0,0,0) (2,0,0,1) N/A (0,0,0,0) (1,0,0,0) (2,0,0,0) (3,0,0,0) (4,0,0,0) (5,0,0,0) N/A N/A N/A (0,1,0,1) (0,2,0,1) (0,1,0,0) (0,2,0,0) N/A N/A (0,0,0,0) (0,0,0,1) (0,0,0,2) (0,0,1,0) (0,0,1,1) (1,0,0,2) (0,0,0,0) (0,0,0,1) (0,0,0,2) (0,0,1,0) (0,0,1,1) (1,0,1,1) (0,1,0,1) (0,2,0,1) N/A (0,0,0,0) (0,0,1,0) (1,0,0,0) (1,0,1,0) N/A 3GPP (0,1,0,2) (0,2,0,2) (0,1,0,1) (0,0,0,2) (0,0,0,1) (0,0,0,0) (0,0,0,1) (0,0,0,2) (0,0,0,0) (0,0,0,2) (0,0,0,0) (0,0,0,1) (0,0,0,0) (0,0,0,1) (0,0,0,2) N/A N/A N/A Release 8 38 22 / 32 23 / 33 24 / 34 25 / 35 26 / 36 27 / 37 28 / 38 29 /39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 (0,1,1,1) (0,0,0,1) (0,0,1,1) (0,0,0,1) (0,0,1,1) (0,0,0,1) (0,0,1,1) (1,0,0,1) (0,0,0,1) (0,0,1,1) (1,0,0,1) (1,0,1,1) (0,0,0,1) (0,0,1,1) (1,0,0,1) (1,0,1,1) (2,0,0,1) (0,0,0,1) (0,0,1,1) (1,0,0,1) (1,0,1,1) (2,0,0,1) (2,0,1,1) (0,1,0,0) (0,2,0,0) (0,1,1,0) (0,0,0,0) (0,0,1,0) (0,0,0,0) (0,0,1,0) (0,0,0,0) (0,0,1,0) (1,0,0,0) (0,0,0,0) (0,0,1,0) (1,0,0,0) (1,0,1,0) (0,1,0,*) (0,2,0,*) (0,1,1,*) (0,0,0,*) (0,0,1,*) (0,0,0,*) (0,0,1,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (1,0,1,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (1,0,1,*) (2,0,0,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (1,0,1,*) (2,0,0,*) (2,0,1,*) N/A N/A N/A N/A N/A (0,1,1,0) (0,0,0,0) (0,0,1,0) (0,0,0,0) (0,0,1,0) (0,0,0,0) (0,0,1,0) (1,0,0,0) (0,0,0,0) (0,0,1,0) (1,0,0,0) (1,0,1,0) (0,0,0,0) (0,0,1,0) (1,0,0,0) (1,0,1,0) (2,0,0,0) (0,0,0,0) (0,0,1,0) (1,0,0,0) (1,0,1,0) (2,0,0,0) (2,0,1,0) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A (0,1,0,*) (0,2,0,*) (0,1,1,*) (0,0,0,*) (0,0,1,*) (0,0,0,*) (0,0,1,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (1,0,1,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (1,0,1,*) (2,0,0,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (1,0,1,*) (2,0,0,*) (2,0,1,*) N/A N/A N/A N/A N/A (0,1,0,*) (0,2,0,*) (0,1,1,*) (0,0,0,*) (0,0,1,*) (0,0,0,*) (0,0,1,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (1,0,1,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (1,0,1,*) (2,0,0,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (1,0,1,*) (2,0,0,*) (2,0,1,*) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 3GPP 3GPP TS 36.211 V8.9.0 (2009-12) N/A (0,0,0,1) N/A (0,0,0,1) (1,0,0,1) (0,0,0,1) (1,0,0,1) (2,0,0,1) (0,0,0,1) (1,0,0,1) (2,0,0,1) (3,0,0,1) (0,0,0,1) (1,0,0,1) (2,0,0,1) (3,0,0,1) (4,0,0,1) (0,0,0,1) (1,0,0,1) (2,0,0,1) (3,0,0,1) (4,0,0,1) (5,0,0,1) (0,1,0,0) (0,2,0,0) N/A (0,0,0,0) N/A (0,0,0,0) (1,0,0,0) (0,0,0,0) (1,0,0,0) (2,0,0,0) (0,0,0,0) (1,0,0,0) (2,0,0,0) (3,0,0,0) (0,1,0,*) (0,2,0,*) N/A (0,0,0,*) N/A (0,0,0,*) (1,0,0,*) (0,0,0,*) (1,0,0,*) (2,0,0,*) (0,0,0,*) (1,0,0,*) (2,0,0,*) (3,0,0,*) (0,0,0,*) (1,0,0,*) (2,0,0,*) (3,0,0,*) (4,0,0,*) (0,0,0,*) (1,0,0,*) (2,0,0,*) (3,0,0,*) (4,0,0,*) (5,0,0,*) N/A N/A N/A N/A N/A N/A (0,0,0,0) N/A (0,0,0,0) (1,0,0,0) (0,0,0,0) (1,0,0,0) (2,0,0,0) (0,0,0,0) (1,0,0,0) (2,0,0,0) (3,0,0,0) (0,0,0,0) (1,0,0,0) (2,0,0,0) (3,0,0,0) (4,0,0,0) (0,0,0,0) (1,0,0,0) (2,0,0,0) (3,0,0,0) (4,0,0,0) (5,0,0,0) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A (0,1,0,*) (0,2,0,*) N/A (0,0,0,*) N/A (0,0,0,*) (1,0,0,*) (0,0,0,*) (1,0,0,*) (2,0,0,*) (0,0,0,*) (1,0,0,*) (2,0,0,*) (3,0,0,*) (0,0,0,*) (1,0,0,*) (2,0,0,*) (3,0,0,*) (4,0,0,*) (0,0,0,*) (1,0,0,*) (2,0,0,*) (3,0,0,*) (4,0,0,*) (5,0,0,*) N/A N/A N/A N/A N/A (0,1,0,*) (0,2,0,*) N/A (0,0,0,*) N/A (0,0,0,*) (1,0,0,*) (0,0,0,*) (1,0,0,*) (2,0,0,*) (0,0,0,*) (1,0,0,*) (2,0,0,*) (3,0,0,*) (0,0,0,*) (1,0,0,*) (2,0,0,*) (3,0,0,*) (4,0,0,*) (0,0,0,*) (1,0,0,*) (2,0,0,*) (3,0,0,*) (4,0,0,*) (5,0,0,*) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A (0,1,1,0) (0,0,0,1) (0,0,1,0) (0,0,0,1) (0,0,1,0) (0,0,0,1) (0,0,1,0) (1,0,0,1) (0,0,0,1) (0,0,1,0) (1,0,0,1) (1,0,1,0) (0,0,0,1) (0,0,1,0) (1,0,0,1) (1,0,1,0) (2,0,0,1) (0,0,0,1) (0,0,1,0) (1,0,0,1) (1,0,1,0) (2,0,0,1) (2,0,1,0) (0,1,0,0) (0,2,0,0) N/A (0,0,0,0) N/A (0,0,0,0) (1,0,0,0) (0,0,0,0) (1,0,0,0) (2,0,0,0) (0,0,0,0) (1,0,0,0) (2,0,0,0) (3,0,0,0) (0,1,0,*) (0,2,0,*) (0,1,1,*) (0,0,0,*) (0,0,1,*) (0,0,0,*) (0,0,1,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (1,0,1,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (1,0,1,*) (2,0,0,*) (0,0,0,*) (0,0,1,*) (1,0,0,*) (1,0,1,*) (2,0,0,*) (2,0,1,*) N/A N/A N/A N/A N/A Release 8 39 63 N/A N/A N/A 3GPP TS 36.211 V8.9.0 (2009-12) N/A N/A N/A N/A * UpPTS 5.7.2 Preamble sequence generation The random access preambles are generated from Zadoff-Chu sequences with zero correlation zone, generated from one or several root Zadoff-Chu sequences. The network configures the set of preamble sequences the UE is allowed to use. There are 64 preambles available in each cell. The set of 64 preamble sequences in a cell is found by including first, in the order of increasing cyclic shift, all the available cyclic shifts of a root Zadoff-Chu sequence with the logical index RACH_ROOT_SEQUENCE, where RACH_ROOT_SEQUENCE is broadcasted as part of the System Information. Additional preamble sequences, in case 64 preambles cannot be generated from a single root Zadoff-Chu sequence, are obtained from the root sequences with the consecutive logical indexes until all the 64 sequences are found. The logical root sequence order is cyclic: the logical index 0 is consecutive to 837. The relation between a logical root sequence index and physical root sequence index u is given by Tables 5.7.2-4 and 5.7.2-5 for preamble formats 0 – 3 and 4, respectively. The u th root Zadoff-Chu sequence is defined by xu (n ) = e −j un( n +1) N ZC , 0  n  N ZC − 1 where the length N ZC of the Zadoff-Chu sequence is given by Table 5.7.2-1. From the u th root Zadoff-Chu sequence, random access preambles with zero correlation zones of length N CS − 1 are defined by cyclic shifts according to xu ,v (n) = xu (( n + Cv ) mod N ZC ) where the cyclic shift is given by vN CS   Cv = 0  RA  RA   dstart v nshift  + (v mod nshift ) N CS v = 0,1,...,  N ZC N CS  − 1, N CS  0 for unrestricted sets N CS = 0 for unrestricted sets RA RA RA for restricted sets v = 0,1,..., nshift ngroup + nshift − 1 and N CS is given by Tables 5.7.2-2 and 5.7.2-3 for preamble formats 0-3 and 4, respectively. The parameter Highspeed-flag provided by higher layers determines if unrestricted set or restricted set shall be used. The variable d u is the cyclic shift corresponding to a Doppler shift of magnitude 1 TSEQ and is given by 0  p  N ZC 2 p du =   N ZC − p otherwise where p is the smallest non-negative integer that fulfils ( pu ) mod N ZC = 1. The parameters for restricted sets of cyclic shifts depend on d u . For N CS  d u  N ZC 3 , the parameters are given by RA nshift = d u N CS  RA d start = 2d u + nshift N CS RA ngroup = N ZC d start  ( ) RA RA nshift = max ( N ZC − 2d u − ngroup d start ) N CS ,0 For N ZC 3  d u  ( N ZC − N CS ) 2 , the parameters are given by 3GPP Release 8 40 3GPP TS 36.211 V8.9.0 (2009-12) RA nshift = ( N ZC − 2d u ) N CS  RA d start = N ZC − 2d u + nshift N CS RA ngroup = d u d start  ( ( ) RA RA RA nshift = min max (d u − ngroup d start ) N CS ,0 , nshift ) For all other values of d u , there are no cyclic shifts in the restricted set. Table 5.7.2-1: Random access preamble sequence length. Preamble format 0–3 4 N ZC 839 139 Table 5.7.2-2: N CS for preamble generation (preamble formats 0-3). N CS configuration 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 N CS value Unrestricted set 0 13 15 18 22 26 32 38 46 59 76 93 119 167 279 419 3GPP Restricted set 15 18 22 26 32 38 46 55 68 82 100 128 158 202 237 - Release 8 41 3GPP TS 36.211 V8.9.0 (2009-12) Table 5.7.2-3: N CS for preamble generation (preamble format 4). N CS configuration N CS value 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 2 4 6 8 10 12 15 N/A N/A N/A N/A N/A N/A N/A N/A N/A 3GPP Release 8 42 3GPP TS 36.211 V8.9.0 (2009-12) Table 5.7.2-4: Root Zadoff-Chu sequence order for preamble formats 0 – 3. Logical root sequence number 0–23 24–29 30–35 36–41 42–51 52–63 64–75 76–89 90–115 116–135 136–167 168–203 204–263 264–327 328–383 384–455 456–513 514–561 562–629 630–659 660–707 708–729 730–751 752–765 766–777 778–789 790–795 796–803 804–809 810–815 816–819 820–837 Physical root sequence number u (in increasing order of the corresponding logical sequence number) 129, 710, 140, 699, 120, 719, 210, 629, 168, 671, 84, 755, 105, 734, 93, 746, 70, 769, 60, 779 2, 837, 1, 838 56, 783, 112, 727, 148, 691 80, 759, 42, 797, 40, 799 35, 804, 73, 766, 146, 693 31, 808, 28, 811, 30, 809, 27, 812, 29, 810 24, 815, 48, 791, 68, 771, 74, 765, 178, 661, 136, 703 86, 753, 78, 761, 43, 796, 39, 800, 20, 819, 21, 818 95, 744, 202, 637, 190, 649, 181, 658, 137, 702, 125, 714, 151, 688 217, 622, 128, 711, 142, 697, 122, 717, 203, 636, 118, 721, 110, 729, 89, 750, 103, 736, 61, 778, 55, 784, 15, 824, 14, 825 12, 827, 23, 816, 34, 805, 37, 802, 46, 793, 207, 632, 179, 660, 145, 694, 130, 709, 223, 616 228, 611, 227, 612, 132, 707, 133, 706, 143, 696, 135, 704, 161, 678, 201, 638, 173, 666, 106, 733, 83, 756, 91, 748, 66, 773, 53, 786, 10, 829, 9, 830 7, 832, 8, 831, 16, 823, 47, 792, 64, 775, 57, 782, 104, 735, 101, 738, 108, 731, 208, 631, 184, 655, 197, 642, 191, 648, 121, 718, 141, 698, 149, 690, 216, 623, 218, 621 152, 687, 144, 695, 134, 705, 138, 701, 199, 640, 162, 677, 176, 663, 119, 720, 158, 681, 164, 675, 174, 665, 171, 668, 170, 669, 87, 752, 169, 670, 88, 751, 107, 732, 81, 758, 82, 757, 100, 739, 98, 741, 71, 768, 59, 780, 65, 774, 50, 789, 49, 790, 26, 813, 17, 822, 13, 826, 6, 833 5, 834, 33, 806, 51, 788, 75, 764, 99, 740, 96, 743, 97, 742, 166, 673, 172, 667, 175, 664, 187, 652, 163, 676, 185, 654, 200, 639, 114, 725, 189, 650, 115, 724, 194, 645, 195, 644, 192, 647, 182, 657, 157, 682, 156, 683, 211, 628, 154, 685, 123, 716, 139, 700, 212, 627, 153, 686, 213, 626, 215, 624, 150, 689 225, 614, 224, 615, 221, 618, 220, 619, 127, 712, 147, 692, 124, 715, 193, 646, 205, 634, 206, 633, 116, 723, 160, 679, 186, 653, 167, 672, 79, 760, 85, 754, 77, 762, 92, 747, 58, 781, 62, 777, 69, 770, 54, 785, 36, 803, 32, 807, 25, 814, 18, 821, 11, 828, 4, 835 3, 836, 19, 820, 22, 817, 41, 798, 38, 801, 44, 795, 52, 787, 45, 794, 63, 776, 67, 772, 72 767, 76, 763, 94, 745, 102, 737, 90, 749, 109, 730, 165, 674, 111, 728, 209, 630, 204, 635, 117, 722, 188, 651, 159, 680, 198, 641, 113, 726, 183, 656, 180, 659, 177, 662, 196, 643, 155, 684, 214, 625, 126, 713, 131, 708, 219, 620, 222, 617, 226, 613 230, 609, 232, 607, 262, 577, 252, 587, 418, 421, 416, 423, 413, 426, 411, 428, 376, 463, 395, 444, 283, 556, 285, 554, 379, 460, 390, 449, 363, 476, 384, 455, 388, 451, 386, 453, 361, 478, 387, 452, 360, 479, 310, 529, 354, 485, 328, 511, 315, 524, 337, 502, 349, 490, 335, 504, 324, 515 323, 516, 320, 519, 334, 505, 359, 480, 295, 544, 385, 454, 292, 547, 291, 548, 381, 458, 399, 440, 380, 459, 397, 442, 369, 470, 377, 462, 410, 429, 407, 432, 281, 558, 414, 425, 247, 592, 277, 562, 271, 568, 272, 567, 264, 575, 259, 580 237, 602, 239, 600, 244, 595, 243, 596, 275, 564, 278, 561, 250, 589, 246, 593, 417, 422, 248, 591, 394, 445, 393, 446, 370, 469, 365, 474, 300, 539, 299, 540, 364, 475, 362, 477, 298, 541, 312, 527, 313, 526, 314, 525, 353, 486, 352, 487, 343, 496, 327, 512, 350, 489, 326, 513, 319, 520, 332, 507, 333, 506, 348, 491, 347, 492, 322, 517 330, 509, 338, 501, 341, 498, 340, 499, 342, 497, 301, 538, 366, 473, 401, 438, 371, 468, 408, 431, 375, 464, 249, 590, 269, 570, 238, 601, 234, 605 257, 582, 273, 566, 255, 584, 254, 585, 245, 594, 251, 588, 412, 427, 372, 467, 282, 557, 403, 436, 396, 443, 392, 447, 391, 448, 382, 457, 389, 450, 294, 545, 297, 542, 311, 528, 344, 495, 345, 494, 318, 521, 331, 508, 325, 514, 321, 518 346, 493, 339, 500, 351, 488, 306, 533, 289, 550, 400, 439, 378, 461, 374, 465, 415, 424, 270, 569, 241, 598 231, 608, 260, 579, 268, 571, 276, 563, 409, 430, 398, 441, 290, 549, 304, 535, 308, 531, 358, 481, 316, 523 293, 546, 288, 551, 284, 555, 368, 471, 253, 586, 256, 583, 263, 576 242, 597, 274, 565, 402, 437, 383, 456, 357, 482, 329, 510 317, 522, 307, 532, 286, 553, 287, 552, 266, 573, 261, 578 236, 603, 303, 536, 356, 483 355, 484, 405, 434, 404, 435, 406, 433 235, 604, 267, 572, 302, 537 309, 530, 265, 574, 233, 606 367, 472, 296, 543 336, 503, 305, 534, 373, 466, 280, 559, 279, 560, 419, 420, 240, 599, 258, 581, 229, 610 3GPP Release 8 43 3GPP TS 36.211 V8.9.0 (2009-12) Table 5.7.2-5: Root Zadoff-Chu sequence order for preamble format 4. Logical root sequence number 0 – 19 20 – 39 40 – 59 60 – 79 80 – 99 100 – 119 120 – 137 138 – 837 5.7.3 Physical root sequence number u (in increasing order of the corresponding logical sequence number) 1 11 21 31 41 51 61 138 128 118 108 98 88 78 2 12 22 32 42 52 62 137 127 117 107 97 87 77 3 13 23 33 43 53 63 136 126 116 106 96 86 76 4 14 24 34 44 54 64 135 125 115 105 95 85 75 5 15 25 35 45 55 65 134 6 124 16 114 26 104 36 94 46 84 56 74 66 N/A 133 123 113 103 93 83 73 7 17 27 37 47 57 67 132 122 112 102 92 82 72 8 18 28 38 48 58 68 131 121 111 101 91 81 71 9 19 29 39 49 59 69 130 120 110 100 90 80 70 10 129 20 119 30 109 40 99 50 89 60 79 - Baseband signal generation The time-continuous random access signal s (t ) is defined by s(t ) =  PRACH N ZC −1 N ZC −1  x k =0 u , v ( n)  e −j 2nk N ZC 1  e j 2 (k + + K (k0 + 2 ))f RA (t −T...

Calculate your order
275 words
Total price: $0.00

Top-quality papers guaranteed

54

100% original papers

We sell only unique pieces of writing completed according to your demands.

54

Confidential service

We use security encryption to keep your personal data protected.

54

Money-back guarantee

We can give your money back if something goes wrong with your order.

Enjoy the free features we offer to everyone

  1. Title page

    Get a free title page formatted according to the specifics of your particular style.

  2. Custom formatting

    Request us to use APA, MLA, Harvard, Chicago, or any other style for your essay.

  3. Bibliography page

    Don’t pay extra for a list of references that perfectly fits your academic needs.

  4. 24/7 support assistance

    Ask us a question anytime you need to—we don’t charge extra for supporting you!

Calculate how much your essay costs

Type of paper
Academic level
Deadline
550 words

How to place an order

  • Choose the number of pages, your academic level, and deadline
  • Push the orange button
  • Give instructions for your paper
  • Pay with PayPal or a credit card
  • Track the progress of your order
  • Approve and enjoy your custom paper

Ask experts to write you a cheap essay of excellent quality

Place an order